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Summary. Experimental herpesvirus retinopathy
presents a unique model of a transient inflammatory
response in the virus-injected eye and subsequent acute
retinal necrosis and chronic inflammation in the
contralateral eye. For 6 days after infection, VEGF,
TGFB,, and TGFB, were associated only with
inflammatory cells in the injected eye. By 6 days (after
viral antigens were no longer detected), VEGF and
TGFB, were upregulated in retinas of injected eyes until
8-10 days. In contralateral eyes, VEGF was first
demonstrated in the retina at 6-7 days (prior to the
appearance of viral antigens) and TGFB, at 7-8 days.
Staining for these factors was also evident around areas
of necrosis. The VEGF receptor, flt-1, was associated
with ganglion cells and the inner nuclear layer of normal
and experimental mice and it was also demonstrated
around areas of necrosis. Another VEGF receptor, flk-1,
was localized to Miiller cell processes and the outer
plexiform layer in normal and experimental mice.
Coincident with VEGF upregulation in the retinas of
herpesvirus-1 injected mice, there was increased flk-1 in
ganglion cells and the inner and outer nuclear layers. IL-
6 was associated with Miiller cell endfeet in normal
mice. Following unilateral intraocular inoculation, 1L-6
spread along the Miiller cell processes and some
astrocytes demonstrated [L-6 in both eyes at 6-8 days.
The present study demonstrates that intraocular
inoculation of herpesvirus is sufficient to induce VEGF,
flk-1, TGFB,, and IL-6 in the retinas of injected and
contralateral eyes. Further investigation of common
signaling pathways for these factors during responses to
viral infection and the development of acute retinal
necrosis could provide information useful for therapeutic
intervention in human herpesvirus retinopathy.
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Introduction

Vascular endothelial growth factor (VEGF) is
induced by hypoxia (Plate et al., 1992; Shweiki et al.,
1992; Goldberg and Schneider, 1994, Hashimoto et al.,
1994; Minchenko, et al., 1994a,b; Levy et al., 1995;
Pierce et al., 1995) and its induction is associated with
angiogenesis in hypoxic tissues (Miller et al., 1994,
Stone et al., 1995; Murata et al., 1996). In some cases,
however, VEGF induction occurs in tissues in which
hypoxia does not appear to be a feature and angiogenesis
does not occur. Inflammatory ocular disorders that do
not present with apparent pathological evidence of
hypoxia include autoimmune disorders, such as
experimental autoimmune uveoretinitis (EAU),
infections, and aphakic or pseudophakic macular edema
(Vinores et al., 1997). These findings suggest that factors
other than hypoxia may be capable of inducing VEGF in
the retina in pathological conditions, as has been
demonstrated in other systems. A number of other
factors, such as interleukin-16 (Ben-Av et al., 1995; Li et
al., 1995; Jackson et al., 1997; Ristimaki et al., 1998)
prostaglandins E1 and E2 (Harada et al., 1994), tumor
necrosis factor-a (Ryuto et al., 1996), epidermal growth
factor, platelet-derived growth factor-BB, basic
fibroblast growth factor (Tsai et al., 1995), and
inflammatory cytokines from activated T-cells
(Samaniego et al., 1998) have been shown to stimulate
the production and secretion of VEGF in other systems
and this is also likely to occur in the eye. In disorders
that do not involve hypoxia, VEGF may be produced by
resident cells and thereby contribute to a pro-
inflammatory cascade via recruitment and activation of
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inflammatory cells and their adhesion to the vascular
endothelium (Barleon et al., 1996; Clauss et al., 1996;
Melder et al., 1996; Lu et al., 1999).

It is likely that VEGF may contribute to an
inflammatory reaction without induction of
neovascularization (NV) due to the presence of one or
more angiogenesis inhibitors. TGFB1 and TGFR2
suppress proliferation of vascular endothelial cells
(Jennings et al., 1988; McAvoy and Chamberlain, 1990;
Chakravarthy and Archer, 1992; Pertovaara et al., 1994;
Behzadian et al., 1995; Kulkarni et al., 1995; Yoshimura
et al., 1995) and may inhibit NV in experimental
herpesvirus retinopathy. We have provided evidence that
TGFB performs this function in the EAU model (Vinores
et al., 1998) and this may occur in other ocular disorders
in which TGFR is upregulated. TGFB has been
demonstrated in vitro to suppress vascular endothelial
cell growth by a down-regulation of the VEGF receptor,
flk-1 (Mandriota et al., 1996).

Interleukin-6 (IL-6) is a pro-inflammatory cytokine
that is associated with ocular inflammatory conditions
including human and experimental uveitis (Murray and
Martens, 1990; DeBoer et al., 1992; De Vos et al., 1992;
Franks et al., 1992; Hoekzema et al., 1992; Planck et al.,
1992; Yoshida et al., 1994; Kuppner et al., 1995) and it
may act in conjunction with VEGF to promote an
inflammatory response. IL-6 can be produced
constitutively or in response to a variety of stimuli, such
as interleukin-18, tumor necrosis factor-ct, or TGFB (Van
Snick, 1990; Benson et al., 1992; Planck et al., 1992;
Kishimoto, et al., 1994; DeVos et al., 1995; Kuppner et
al., 1995). IL-6 overexpression is associated with
breakdown of the blood-brain barrier (BBB) and
recruitment of inflammatory cells (Brett et al., 1995;
Watson et al., 1996), which are potential mechanisms for
fostering an inflammatory response. Since VEGF
promotes blood-retinal barrier (BRB) breakdown
(Connolly et al., 1989; Luna et al., 1997; Ozaki et al.,
1997) and also participates in the recruitment of
inflammatory cells (Barleon et al., 1996; Clauss et al.,
1996; Melder et al., 1996; Lu et al., 1999), VEGF and
IL-6 may act synergistically.

Experimental herpesvirus retinopathy presents a
unique model in which there is a transient inflammatory
response in the anterior segment of one eye and a viral
infection leading to acute retinal necrosis and chronic
inflammation in the opposite eye (Whittum et al., 1983,
1984). This model facilitates the investigation of both
processes in the same animal. Inoculation of herpes
simplex virus type 1 (HSV-1) into the anterior chamber
of one eye of a BALB/c mouse results in a rapid,
transient inflammatory reaction, which subsides with the
loss of viral protein at about day 5, post-inoculation.
There is no residual damage in the retina of the injected
eye. The contralateral eye develops a delayed retinal
necrosis beginning at 7 days post-inoculation with
inflammatory cell infiltration, coincident with the
appearance of virus, and leading to complete retinal
necrosis by day 14. The present report describes our
studies of expression of VEGF and its receptors and of

TGEFB and IL-6 during the course of these processes.
Materials and methods

A total of 31 adult BALB/c mice received 2x10%
plaque-forming units (pfu) of the KOS strain of HSV-1
in a volume of 4ul, into the anterior chamber, as
previously described (Dix et al., 1987; Whittum et al.,
1984). Twenty-one of the mice were injected unilaterally
and the remainder were injected bilaterally. Of the mice
receiving a unilateral inoculation, 2 each were sacrificed
at1,2,6,7,8, 12, and 13 days and 4 were sacrificed at 3
and 11 days. Of the bilaterally-injected mice, 3 were
sacrificed at 1 and 2 days, and 2 were sacrificed at 6 and
12 days. The retinas of injected eyes from unilaterally-
or bilaterally-injected mice were found to be
phenotypically identical (Whittum et al., 1984), and thus
were grouped together. As controls for nonspecific
inflammation induced by injection alone, 10 mice
received intraocular injections of the same volume of
Hank's Balanced Salt Solution (HBSS). Half of the mice
were inoculated unilaterally and the other half were
inoculated bilaterally. HBSS-injected control mice were
sacrificed at 3 days (3 unilaterally and 2 bilaterally
injected) and at 7 days post-inoculation (2 unilaterally-
and 3 bilaterally-injected). Eyes from normal, untreated
mice were similarly processed. When the mice were
sacrificed, the eyes were enucleated, immediately snap-
embedded in OCT compound (Miles, Elkhart, IN), and
stored at -80 °C. One eye from each of the following was
cryopreserved: 3 mice that were sacrificed 2 days after
receiving bilateral injections, one of the mice receiving a
unilateral injection (contralateral eye was frozen), and
the 5 normal mice. Both eyes from all other mice were
frozen. Cryosections were cut for immunohistochemistry
and post-fixed in -20 °C methanol. Immunohisto-
chemical staining for VEGF, the VEGF receptors, flt-1
and flk-1, TGFBy, and TGFB, was then performed, as
previously described (Chen et al., 1997). To verify the
specificity of the antibodies, VEGF and VEGF receptor
antibodies were pre-incubated for 2 hours at room
temperature with a tenfold excess of the appropriate
control peptide (Santa Cruz Biotechnology, Santa Cruz,
CA) prior to applying it to the tissue sections as
previously described (Vinores et al., 1997). IL-6 staining
was performed using a 1:25 dilution of a monoclonal rat
anti-mouse IL-6 antibody (PharMingen, San Diego, CA)
with the HistoMark Streptavidin-AP System goat-anti-
rat IgG (H+L) kit (Kirkegaard & Perry, Gaithersburg,
MD). Immunoreactivity for IL-6 was visualized with
HistoMark Red (Kirkegaard & Perry). The other
antigens were visualized with 3-amino-9-ethylcarbazole
(Sigma, St. Louis, MO).

Results

VEGF

VEGF was not demonstrated in any of the normal
mice or in injected or uninjected eyes of mice within 2
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days after receiving HSV-1 inoculations. At 3 days post-
inoculation, VEGF positivity was associated with sparse
inflammatory cells in the vitreous of 2 of 3 HSV-1
inoculated eyes, but the retinas of injected and
uninjected eyes were negative. VEGF was first evident
in the retinas of injected eyes at 6 days post-inoculation
(Table 1), where 5 of 6 eyes demonstrated patchy
staining, primarily in the inner retina (Fig. 1A). At 7-8
days post-inoculation, patchy VEGF staining persisted in
the injected eyes of 6 of 9 mice with positivity in the
subretinal space in 2 mice that corresponds to areas of
inflammatory cell infiltration (Figs. 1B-D). Most of the
VEGF protein was eliminated by 8-10 days, when viral
antigens were no longer present in the anterior segments
of injected eyes (Whittum-Hudson and Pepose, 1987).
By 10-13 days post-inoculation, 50% of the mice still
demonstrated VEGF positivity, which was largely
confined to sparse inflammatory cells present on the
inner surface of the ipsilateral retina (Fig. 1E) and in
perivascular areas surrounding inner retinal vessels (Fig.
1F). At 3 days post-inoculation, in the retinas of mice
injected intraocularly with HBSS, 1 of 7 injected eyes
showed some VEGF staining in the intercellular spaces
from the outer nuclear layer to the inner nuclear layer.
By 7 days post-inoculation, similar extracellular staining
was observed in 5 of 8 injected eyes, with one eye also
showing staining in the retinal pigment epithelium
(RPE) and around the inner segments of the
photoreceptors. None of the other retinas from HBSS-
injected mice showed cytoplasmic staining for VEGFE.
Weak, focal VEGF staining was first demonstrated
in the anterior retina of the contralateral eye of 1 of 4
unilaterally-infected mice at 6 days post-inoculation
(Table 1). By 7 days post-inoculation, all contralateral
uninfected eyes demonstrated intraretinal VEGF
staining. The staining appeared patchy and was primarily
localized to the inner nuclear and ganglion cell layers

Table 1. VEGF localization in retinas of mice receiving intracameral
injections of HSV-1

(Fig. 1G). By 8 days post-inoculation, the VEGF
staining intensified and as cell destruction occurred in
the retinas of uninjected eyes, prominent VEGF staining
could be seen in areas of necrosis (Fig. 1H). At 8 days
post-inoculation, contralateral retinas from 3 of 4 mice
unilaterally-injected with HSV-1 expressed VEGF
immunoreactivity. The VEGF-negative retina, unlike the
others, showed normal morphology and could represent
a case of model failure. As retinal cell destruction
progressed, VEGF expression persisted in a patchy
distribution in 7 of 8 retinas (Fig. 2A), primarily in the
inner retina and in areas where cellular destruction has
occurred. Pre-incubation of VEGF antibodies with
control peptide eliminated all immunostaining (Fig. 2B).

Fit-1

Weak positivity for the VEGF receptor, flt-1, was
seen in the retinas of normal, uninjected mice, HSV-1
injected eyes, contralateral eyes of mice injected
unilaterally with HSV-1 examined prior to the onset of
inflammation, and all HBSS-injected eyes (Fig. 2C). Flt-
1 staining was localized to the ganglion cells and the
inner nuclear layer in all treatment groups and controls.
In the uninjected eyes of mice receiving unilateral HSV-
1 inoculations, more intense staining was seen in parallel
with the onset of inflammatory cell infiltration and
retinal destruction (Fig. 2E). Clusters of inflammatory
cells in the subretinal space, resembling those that
stained positively for VEGF (see Fig. 1B), were positive
for flt-1 (Fig. 2F). Pre-incubation of flt-1 antibodies with
control peptide eliminated all immunostaining on
comparable sections from the same animal,
demonstrating the specificity of flt-1 immunostaining
(Fig. 2D).

Fik-1
Most mice, regardless of treatment, showed weak,

patchy flk-1 staining associated with Miiller cell
processes and the outer plexiform layer or an absence of

DAYS INJECTED EYE CONTRALATERAL EYE flk-1 staining in the retina (Table 2). Retinal positivity
Post-inoculation  (Positively stained/total) (Positively stained/total) for flk-1, that was above baseline levels, was first
observed in HSV-1 injected eyes 6 days post-

0 0/5 0/5 s . ; .
13 014 o7 inoculation, the same time that VEGF upregulation was
6 5/6 1/4 first observed. Flk-1 continued to be upregulated in
7-8 6/9 6/7 approximately 50% of the retinas of HSV-1 injected eyes
10-13 6/12 /8 from days 7-13 (Fig. 3A,B), even though the tissues

Fig. 1. Immunolocalization of VEGF in the ipsilateral (A-F) and contralateral (G, H) retinas of mice receiving intraocular injections of HSV-1 into one
anterior chamber. A. Focal positivity for VEGF is first demonstrated (red reaction product) in the retina of a HSV-1 injected eye at 6 days post-
inoculation. B. Hematoxylin and eosin stained section of the retina from a HSV-1 injected eye, 8 days post-inoculation, showing subretinal inflammatory
cell infiltration (bottom). C. A comparable area from the same retina shown in 1B (HSV-1 injected eye, 8 days post-inoculation) showing VEGF staining
in the area of inflammatory cell infiltration in the outer retina. D. A comparable area to that shown in B and C, in which the VEGF antibodies were pre-
incubated with control peptide, reveals no positive staining, demonstrating the specificity of the antibodies. E. VEGF staining is largely restricted to
sparse inflammatory cells (arrowheads) on the inner surface of the retina in a HSV-1 injected eye, 12 days post-inoculation. F. Perivascular staining
(arrows) for VEGF in the inner retina of a HSV-1 injected eye, 12 days post-inoculation. Inflammatory cells on the inner surface of the retina
(arrowheads) are also positive. G. Weak, focal VEGF staining (arrowheads) in the retina of the uninjected eye of a mouse receiving a unilateral HSV-1
injection 7 days prior. H. More prominent VEGF staining is associated with areas of retinal necrosis 8 days post-inoculation in the contralateral eye of a

mouse receiving HSV-1 injection. x 650
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Fig. 2. Differential localization of VEGF (A-C) and its receptor, flt-1 (D-G), in the retina. A. VEGF staining (red reaction product) associated with retinal
necrosis 12 days after HSV-1 inoculation in the opposite eye. x 650. B. Pre-incubation of anti-VEGF antibodies with VEGF peptide eliminates staining
in the retina taken from a mouse 12 days after receiving HSV-1 inoculation inthe opposite eye, demonstrating the specificity of the antibodies. This
section is from the same animal as illustrated in Fig. 1E, F. x 130. C. Weak fit-1 staining (red) associated with the ganglion cells (top) and inner nuclear
layer (middle) in the retina of a HSV-1 injected eye, 1 day post-inoculation. x 260. D. Pre-incubation of flt-1 antibodies with control peptide shows an
absence of immunostaining in a comparable area from the same retina shown in 1B (compare to E and F), demonstrating the specificity of the
antibodies. x 650. E. Flt-1 staining (red) associated with the onset of inflammatory cell infiltration in the retina of a mouse, 7 days after receiving HSV-1
injection in the opposite eye. x 260. F. A subretinal cluster of inflammatory cells comparable to those illustrated in 1B-D demonstrates flt-1 positivity
(red), 11 days after receiving HSV-1 injection in the opposite eye. x 650
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remained histologically normal. In addition to staining in
the Miiller cell processes and the outer plexiform layer,
retinal flk-1 positivity in HSV-1 injected eyes from 7-13
days post-inoculation was observed in ganglion cells and
occasionally in the inner and outer nuclear layers.

In contralateral retinas, flk-1 staining was first
observed at 7-8 days post-inoculation, consistent with
the upregulation of VEGF. Staining was localized to
additional areas other than Miiller cell processes and the
outer plexiform layer as increased staining of Miiller cell
processes was observed (Fig. 3C). In these animals, flt-1
staining was also seen in ganglion cells and around areas
of necrosis. Only Miiller cell processes and the outer
plexiform layer expressed flk-1 in retinas of buffer-
injected or contralateral uninjected eyes of control mice
at earlier times (3 or 7 days) post-inoculation.

TGFB;,

TGFB, was associated with inflammatory cells in
experimental herpesvirus retinopathy. TGF31 was not
demonstrated in normal retinas or in retinas 1 day post-
inoculation, but it was first localized in the retinas of
HSV-1 injected eyes at 2 days post-inoculation, where it
was detected in inflammatory cells in the vitreous of 3 of
5 eyes (Fig. 3E). Some inflammatory cells persisted in
the vitreous through 13 days and these cells were found
to be TGFB;-positive. TGF; was first demonstrated in
the contralateral retinas of HSV-1 injected eyes at 7 days
post-inoculation, coincident with inflammatory cell
infiltration.

TGFB,

Weak, patchy or spotty staining for TGF32 was seen
in the retinas of control mice and of most HSV-1
injected and contralateral eyes at all time points, thus
representing constitutive levels. The weak staining was
primarily localized to the inner plexiform layer. By 2

days after inoculation, some clusters of inflammatory
cells in the vitreous were labelled for TGFB3, and the
staining associated with these cells intensified by day 3
(Fig. 3F). Some weak staining of ganglion cells was also
observed. By day 6, retinal staining for TGFB2 increased
in intensity and spread to the outer retina (Fig. 3D,G).
TGFR2 staining in the retinas of HSV-1 injected mice
diminished to normal levels by 8-10 days, as the
inflammation subsided. Residual inflammatory cells
were decorated with TGF2 antibodies.

In the eyes contralateral to those injected with HSV-
1, TGFB2 staining above baseline was first evident at 7-8
days, coincident with the infiltration of inflammatory
cells and the onset of retinal cell destruction. As acute
retinal necrosis progressed, widespread TGFB2 staining
was demonstrated throughout the retina (Fig. 4A). The
staining was particularly intense at the edges of areas of
necrosis (Fig. 4C,D).

IL-6

Normal BALB/c mice showed focal staining of
Miiller cell processes for IL-6 along the inner surface of
the retina. Following intraocular injection of HSV-1,
retinas demonstrated intermittent staining of Miiller cell
processes, some extracellular positivity between the cells
in the inner nuclear layer, and staining at the interface
between the inner nuclear layer and the outer plexiform
layer and around vessels (Fig. 4B,E). Some astrocyte
processes also stained for IL-6 at 8 days post-inoculation
in the HSV-1 injected eye and at 6-8 days post-
inoculation in the contralateral eye. Additional
intracellular IL-6 staining was seen surrounding areas of
retinal cell destruction in the contralateral eyes.

Discussion

Following the inoculation of HSV-1 into the anterior
chamber of BALB/c mouse eyes, a transient

Table 2. Flk-1 localization in retinas of mice receiving intraocular injections of HSV-1.

DAY POST- INOCULUM INJECTED EYE OR N Flk-1 Flk-1 STAINING LIMITED TO Flk-1 STAINING INVOLVING
INOCULATION COTRALATERAL NEGATIVE MULLER CELL PROCESSES  RETINAL CELLS OTHER THAN
EYE AND THE OUTER MULLER CELLS (Ex: ganglion
PLEXIFORM LAYER cells, inner nuclear layer, etc.)
0 HSV-1 Injected 7 5 (71%) 2 (29%) 0 (0%)
0 HSV-1 Contralateral 3 0 (0%) 3 (100%) 0 (0%)
1-3 HSV-1 Injected 15 4 (27%) 11 (73%) 0 (0%)
1-3 HSV-1 Contralateral 5 1 (20%) 4 (80%) 0 (0%)
6 HSV-1 Injected 6 0 (0%) 1 (17%) 5 (83%)
6 HSV-1 Contralateral 4 3 (75%) 1 (25%) 0 (0%)
7-8 HSV-1 Injected 8 1 (12%) 3 (37%) 4 (50%)
7-8 HSV-1 Contralateral 7 1 (14%) 1 (14%) 5 (71%)
10-13 HSV-1 Injected 11 1 (9%) 5 (45%) 5 (45%)
10-13 HSV-1 Contralateral 9 2 (18%) 2 (18%) 5 (56%)
3 HBSS Injected 7 5 (71%) 2 (29%) 0 (0%)
3 HBSS Contralateral 3 3 (100%) 0 (0%) 0 (0%)
7 HBSS Injected 8 2 (25%) 6 (75%) 0 (0%)
7 HBSS Contralateral 2 0 (0%) 2 (100%) 0 (0%)
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Fig. 3. Immunohistochemical staining for the VEGF receptor, flk-1, (A-C), TGFB, (E), and TGFB32 (D,F,G) in the retinas of mice receiving HSV-1
injections into one anterior chamber. x 260. A. Flk-1 staining (red) in Muller cell processes along the inner retinal surface in the retina of an HSV-1
injected eye, 7 days post-inoculation. x 260. B. Higher magnification shows flk-1 staining of Miiller cell processes in the retina of an HSV-1 injected eye,
6 days post-inoculation. x 650. C. Flk-1 staining of Muller cell processes in the retina of a mouse, 12 days after receiving HSV-1 injection in the
opposite eye. x 260. D. TGFB, positivity in the outer retina (red) in an HSV-1 injected eye, 6 days post-inoculation. x 650. E. TGFB1 staining of
inflammatory cells in the vitreous (arrowheads) in an HSV-1 injected eye, 3 days post-inoculation. x 260. F. TGFB2 staining of inflammatory cells in the
vitreous (top) of an HSV-1 injected eye, 3 days post-inoculation. x 130. G. Higher magnification showing intraretinal staining for TGFB2 (arrowheads) in
an HSV-1 injected eye, 6 days post-inoculation. x 650
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inflammatory response was generated in the anterior
segment (Whittum et al., 1983; Dix et al., 1987). By 3
days, some inflammatory cells had entered the vitreous.
These inflammatory cells provided a source for VEGF in
the vitreous of virus injected eyes, but VEGF was not
detected within the retina until 6 days post-inoculation,
at which time viral antigens were no longer detectable
(Whittum-Hudson and Pepose, 1987). Within the
contralateral retina, VEGF was first demonstrated at 6
days post-inoculation, which was 1 day prior to the
initial detection of viral antigens and inflammatory cell
infiltration. VEGF was detectable at 7 days post-
inoculation in all contralateral retinas, coincident with
the arrival of virus into the retina of uninjected eyes. The

retina in only 1 of 4 eyes at 8 days post-inoculation was
entirely negative for VEGF and this retina showed
normal morphology, suggesting that model failure may
have occurred in this animal. It is possible that even sub-
threshold levels of virus present in the contralateral,
uninjected eye triggers the production of VEGF. The
experimental HSV retinitis model will allow the study of
the details of inflammatory responses both at the level of
VEGF transcription and translation. This information
may help in the development of new therapeutic targets
that could interrupt this process earlier in the
pathogenesis of ocular infection.

VEGF (Plate et al., 1992; Schweiki et al., 1992;
Goldberg and Schneider, 1994; Hashimoto et al., 1994;

Fig. 4. Immunohistochemical staining for TGFB2 (A, C, D) and IL-6 (B,E) in the retinas of mice receiving a unilateral injection of HSV-1 in the anterior
chamber. A. Widespread TGFB2 staining (red) is demonstrated throughout the retina of a mouse 11 days after HSV-1 injection in the opposite eye.
B. Seven days after intraocular injection of HSV-1, prominent staining for IL-6 is evident in Mdiller cell processes. C. Widespread retinal TGFB2 staining
is visualized along the edges of necrotic areas in an eye contralateral to the eye receiving HSV-1, 12 days previously. D. Another area of widespread
retinal TGFB2 showing particularly intense staining bordering areas of necrosis in mice that received HSV-1 inoculation in the opposite eye 12 days
previously. E. Conspicuous IL-6 staining of Muller cell processes in the retina of an HSV-1 injected eye, 1 day post-inoculation. x 260
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Minchenko, et al., 1994a,b; Levy et al., 1995; Pierce et
al., 1995) and its receptors (Tuder et al., 1995; Brogi et
al., 1996) are induced under hypoxic conditions, but in
herpesvirus induced retinopathy there is no evidence of
hypoxia. This presents the liklihood that VEGF is
induced by other factors associated with ocular disease,
as has been previously suggested (Vinores et al., 1995).
Herpesvirus infection has been shown to alter
intracerebral and intraocular cytokine production.
Among the major cytokine transcripts found in the
brains of mice infected with HSV-1 via intraocular
injection are TNFa and IL-18, which are abundantly
expressed by 5 days post-infection (Lewandowski et al.,
1994). In the anterior chamber infection model,
transcript levels for TNFa, IL-6 (Drescher and Whittum-
Hudson, 1996a), and Type I interferons (Drescher and
Whittum-Hudson, 1997) are increased 4.5-fold in retinas
within 2-3 days post-infection. Both TNFa (Ryuto et al.,
1996) and IL-B (Ben-Av et al., 1995; Li et al., 1995;
Jackson et al., 1997; Ristimaki et al., 1998) have been
shown to be capable of inducing VEGF and the
upregulation of these factors occurs with a shorter time
interval following the introduction of HSV-1 than is
required for intraretinal VEGF induction. Therefore, it is
likely that VEGF is indirectly induced by one of these
factors or an alternative cytokine whose regulation is
altered by HSV-1 infection. Following its upregulation,
VEGF may augment the inflammatory response to the
virus.

VEGF can promote ocular neovascularization
(Adamis et al., 1994; Aiello et al., 1994; Miller et al.,
1994; Pierce et al., 1995; Stone et al., 1995; Murata et
al., 1996; Ozaki et al., 1997), but in some cases, VEGF
is upregulated without neovascularization occurring
(Vinores et al., 1997). One possible explanation for this
is the presence of an angiogenesis inhibitor. TGFB
appears to serve this function in EAU, where it is
upregulated concurrently with VEGF (Vinores et al.,
1998). TGFB is similarly upregulated prior to VEGF in
the retinas of HSV-1 injected eyes and their contralateral
counterparts, thus potentially preventing VEGF from
exerting its angiogenic activity on the retinal
vasculature. The anti-angiogenic activity may be
accomplished by a down-regulation of VEGF receptors,
as has been reported for vascular endothelial cells
(Mandriota et al., 1996).

[L-6 is a multifunctional cytokine that is associated
with ocular inflammatory conditions. Miiller cells
respond rapidly to ocular inflammation or infection and
studies using cultured retinal glia and isolated retinas
from HSV-1 injected eyes showed that transcript levels
of IL-6 are rapidly upregulated and there is secretion of
IL-6 from cultured Miiller cells upon exposure to HSV-1
or other inflammatory mediators (Drescher and
Whittum-Hudson, 1996a,b). Immunohistochemical
staining for IL-6 in the retinas of mice receiving
intraocular HSV-1 injections showed the localization of
IL-6 to Miiller cells coincident with the marked
upregulation of glial fibrillary acidic protein that occurs

in the same cells during the first 3 days after intraocular
injection of HSV-1 (Drescher and Whittum-Hudson,
1996b). Since the earliest induction of IL-6 is observed
in retinas that do not undergo necrosis nor become
highly inflamed, IL-6 is likely to be immunomodulatory
or provide antiviral protection. IL-6 may downregulate
IL-1B8 and/or TNFa expression to mute the potentially
destructive inflammation in ipsilaterally injected eyes.
IL-6 expression in the retinas of HSV-1 injected eyes
persists to at least 13 days post-injection and it becomes
more widespread with the onset of retinal necrosis in the
contralateral eye. The present study demonstrates that
the intraocular injection of live virus into the anterior
chamber is sufficient for the induction of VEGF, flk-1,
TGFB,, and IL-6 in the retina of the injected eye, as well
as the contralateral, uninjected eye.

The experimental model of herpesvirus retinopathy
appears to share relevant features with the human
discase including anti-herpes antibodies (DeBoer et al.,
1994) and acute retinal necrosis (Thompson et al., 1994).
Therefore, the information derived from the study of this
experimental model, which provides the setting of a
transient inflammatory response in one eye and
subsequent virus-mediated acute retinal necrosis in the
opposite eye, should be applicable to human herpesvirus
retinopathy and is likely to provide information
regarding the interaction of cytokines and inflammatory
mediators in the pathogenesis of the disease. Based on
the results of this study, strategies that modulate the
induction of VEGF, flk-1, TGF32, or IL-6 may have a
beneficial effect on the course of herpesvirus retinopathy
and acute retinal necrosis.
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