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Una traducción terminista de la lógica natural de Moss

A Terministic Translation of Moss’ Natural Logic
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Resumen: En esta contribución presentamos una 
traducción de la lógica natural de Moss a la lógica 
de términos de Sommers usando un método de 
árboles. El resultado de esta traducción muestra 
que la lógica de términos de Sommers se encuen-
tra más allá de la frontera de los sistemas tipo 
Peano-Frege, Church-Turing y Aristóteles pero 
mantiene el poder expresivo de los sistemas que 
habitan dentro de tales límites. Esto sugiere que la 
lógica de términos puede ser útil para un proyecto 
de lógica natural.
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Abstract: In this contribution we present a trans-
lation from Moss’ natural logic to Sommers’ 
term logic by using a tableaux method. The 
result shows Sommers’ term logic lies beyond 
the Peano-Frege, Church-Turing, and Aristotle 
frontiers while maintaining the inferential and 
expressive powers of the systems that inhabit 
such limits. This suggests that term logic might be 
instrumental for a natural logic project.
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1. Introducción

En este trabajo intentamos alcanzar una meta sencilla: ofrecer una traducción de la 
lógica natural de Moss a la lógica de términos de Sommers usando un método de árboles. 
El resultado de esta traducción muestra que la lógica de términos de Sommers es un sis-
tema alternativo a la lógica natural de Moss que i) se encuentra más allá de la frontera de 
los sistemas tipo Peano-Frege, Church-Turing y Aristóteles pero que ii) mantiene el poder 
expresivo de los sistemas que habitan dentro de los límites de tales fronteras —más adelante 
daremos detalles de lo que significa habitar estos confines.

Este resultado, como veremos, sugiere que las lógicas de términos, lejos de estar con-
denadas a ser un episodio superado de la historia de la lógica, pueden ser usadas adecuada-
mente en la implementación de un proyecto de lógica natural. Para alcanzar nuestra meta 
y exponer el resultado obtenido procedemos de la siguiente manera: primero hacemos una 
introducción general a la lógica natural de Moss y a la lógica de términos de Sommers 
(§2), posteriormente presentamos nuestra traducción (§3) y, por último, hacemos algunas 
observaciones sobre los resultados obtenidos (§4).

2. La lógica natural de Moss y la lógica de términos de Sommers

2.1. Aspectos generales de la lógica natural de Moss

De acuerdo con Moss (2015), la raison d’être de la lógica es el estudio de la inferencia 
en un lenguaje natural. Ahora bien, para estudiar la inferencia en un lenguaje natural es 
costumbre hacer uso de lenguajes de orden n: la lógica proposicional y la lógica de primer 
orden (con identidad), por ejemplo, son sistemas lógicos definidos mediante lenguajes de 
orden 0 y 1 respectivamente.

Aunque el origen de este hábito tiene una historia interesante y compleja (Eklund, 1996), 
está relacionado, ciertamente, con las ventajas de orden representativo que los lenguajes 
de primer orden ofrecen frente a sistemas más tradicionales;1 sin embargo, aunque esta 
elección sintáctica —la de usar sistemas de primer orden— nos es habitual en la docencia, 
la investigación y la aplicación de la lógica —digamos, es la visión heredada de la lógica 
(cfr. Castro-Manzano, 2021)—, no hace falta ser hipercríticos para notar que esta visión 
de la lógica, en efecto, nos puede ser familiar, pero no por ello nos resulta natural. Woods 
comenta (el énfasis es nuestro):

1	 Augustus De Morgan (1860) ya había notado la incapacidad de la lógica de términos aristotélica para lidiar con 
relaciones, pero fue Russell (1937/1900) quien popularizó la idea de que las limitaciones del programa lógico 
tradicional, i.e., silogístico (vide Apéndice A), se debían al análisis de los enunciados en clave terminista como 
triadas de términos sujeto y predicado unidos por una cópula. Posteriormente, Carnap (1930) generalizó esta 
consideración a toda la lógica tradicional al sostener que la única sintaxis disponible en este tipo de lógica es 
predicativa. Y si bien estos lı́mites sintácticos pueden parecer menores (ya que producen dificultades para la 
correcta representación de enunciados singulares, relacionales o compuestos), es la homogeneidad de términos 
(Geach, 1972; 1980) la dificultad más grave que este tipo de lógicas enfrentan.
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It is no secret that classical logic and its mainstream variants aren’t much good for 
human inference as it actually plays out in the conditions of real life —in life on 
the ground, so to speak. It isn’t surprising. Human reasoning is not what the modern 
orthodox logics were meant for. The logics of Frege and Whitehead & Russell were 
purpose-built for the pacification of philosophical perturbation in the foundations of 
mathematics, notably but not limited to the troubles occasioned by the paradox of 
sets in their application to transfinite arithmetic. (Woods, 2016: 404). 

Ciertamente, si bien la lógica de primer orden (clásica, según Woods) ha sido fundamental 
para el estudio de la inferencia en general, no deja de extrañarnos que, a pesar de su finalidad 
original en la fundamentación de las matemáticas, sea utilizada constantemente como una 
herramienta bona fide para la representación de razonamiento en lenguaje natural. Considere-
mos, a este efecto, lo que hemos denominado “el reto de Bar-Hillel” (el énfasis es nuestro):

I challenge anybody here to show me a serious piece of argumentation in natural lan-
guages that has been successfully evaluated as to its validity with the help of formal 
logic. I regard this fact as one of the greatest scandals of human existence. Why has 
this happened? How did it come to be that logic which, at least in the views of some 
people 2,300 years ago, was supposed to deal with evaluation of argumentation in 
natural languages, has done a lot of extremely interesting and important things, but 
not this? (Stall, 1969: 256). 

Para Moss, este desajuste entre lógica y lenguaje natural ha tenido dos efectos: una desaten-
ción al lenguaje natural y una sobrevaloración de los sistemas de primer orden. Estos efectos 
son problemáticos lógica y computacionalmente porque, por un lado, los sistemas de primer 
orden son incapaces de modelar ciertas inferencias interesantes de lenguaje natural, como la 
simplificación poliádica; y por otro lado, ciertos fragmentos de primer orden son indecidibles.2

Ante esta situación, el proyecto de Moss pretende mostrar que ciertas partes signifi-
cativas del razonamiento en lenguaje natural pueden llevarse a cabo usando lenguajes de 
primer orden —con ciertas modificaciones sintácticas, como veremos— pero en sistemas 
decidibles. Para alcanzar esta meta, Moss propone una serie de sistemas lógicos que se 
introducen de manera incremental, del sistema más simple al más complejo, y demuestra 
que cada uno de ellos es completo: a esta serie la llamamos “jerarquía de Moss”. Para los 
fines de este trabajo, a continuación exponemos la jerarquía de Moss mediante la exposición 
de su sintaxis y sus reglas de inferencia —por cuestiones de espacio y por las metas de este 
trabajo, omitimos las pruebas de completud.

2	 En este punto, como una revisora nos ha hecho notar, alguien podría observar que la lógica de primer orden 
trata de estudiar la (in)validez del razonamiento simpliciter, es decir, independientemente de su expresión 
en un lenguaje natural. Esto nos llevaría a considerar el problema de la representación del razonamiento en 
lenguaje natural como si fuera un problema externo, extra lógico. Esta observación tiene algo de verdad porque, 
ciertamente, este no es un problema propio de la lógica de primer orden, sino más bien de su enseñanza y su 
aplicación en la argumentación o en la filosofía del lenguaje; sin embargo, el hecho de que el problema pueda 
ser externo no implica que no sea un problema con sus propios méritos, y son justamente problemas externos 
los que han disparado las discusiones sobre la naturaleza de la lógica, o mejor dicho, las lógicas, y su relación 
con la argumentación y la filosofía del lenguaje.
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La jerarquía de Moss comienza con una lógica que incluye el cuantificador “Todo” (este 
sistema se llama A por el cuantificador universal, por All). La sintaxis de A depende de un 
conjunto infinito de sustantivos p, q, r, …, que son útiles para formar enunciados de la forma:

Todo p es q

La semántica de las expresiones de A depende de un modelo M que se define, como es 
usual, mediante un conjunto M y una interpretación |[p]|⊆M para cada sustantivo p de tal 
manera que:

M ⊨ Todo p es q si y solo si |[p]|⊆|[q]|.

Y las reglas de inferencia de A son dos:

Tabla 1: Reglas de A

⊢Todo p es p
Todo p es n    Todo n es q

⊢Todo p es q

Dada esta información, notar que el sistema A es, en efecto, completo, es trivial. Lo que 
hace Moss, posteriormente, es agregar nuevas reglas de inferencia al sistema A pero preser-
vando completud. Así, para generar el siguiente sistema, S, Moss introduce el cuantificador 
“Algún” para producir enunciados de la forma:

Algún p es q

La semántica de este sistema se define, entonces, del siguiente modo:

M ⊨ Todo p es q si y sólo si |[p]|⊆|[q]|.
M ⊨ Algún p es q si y sólo si |[p]|∩|[q]|≠∅.

Y las reglas de inferencia, en consecuencia, son las siguientes:

Tabla 2: Reglas de A y S

⊢Todo p es p
Todo p es n    Todo n es q

⊢Todo p es q
Algún p es q
⊢Algún q es p

Algún p es q
⊢Algún p es p

Todo q es n    Algún p es q
⊢Algún p es n
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Es claro, hasta este punto, cuál es la idea de la jerarquía: todo lo que se puede probar en 
un sistema inferior (digamos A) se puede probar en un sistema superior (digamos S) pero 
no a la inversa.

El siguiente sistema, S†, resulta de añadir los átomos complementarios, p, con la interpre-
tación |[p]|=M/|[p]| de tal manera que S† gana expresividad sobre S en la medida en que en 
S† se pueden expresar los siguientes enunciados que no se pueden expresar en A o en S (de 
ahora en adelante, todos los sistemas anotados con “†” representan sistemas con negación 
completa):

Tabla 3: Enunciados de S y S†

S Todo p es q

S†

Algún p es q
Todo p es q = Ningún p es q

Algún p es q = Algún p no es q
Algún p es q

En consecuencia, las reglas de inferencia para S y S† son las siguientes:

Tabla 4: Reglas de S y S†

⊢Todo p es p
Todo p es n Todo n es q

⊢Todo p es q
Todo q es q
⊢Todo q es p

Todo q es q
⊢Todo p es q 

Algún p es q
⊢Algún q es p

Algún p es q
⊢Algún p es p

Todo q es n Algún p es q
⊢Algún p es n

Todo p es q
⊢Todo q es p 

Algún p es p
⊢X 

Como se puede apreciar hasta este momento, con estos elementos de la jerarquía, Moss 
logra reconstruir la semántica y la completud de lo que conocemos como silogística asertó-
rica (vide Apéndice A). Sin embargo, añadiendo variables para representar verbos transitivos 
—lo cual es una variación sintáctica en un sistema típico de primer orden—, Moss produce 
un par de sistemas expresivamente más poderosos: los sistemas relacionales R y R†. Para 
ejemplificar las capacidades expresivas de R y R†, donde r expresa un verbo transitivo, 
consideremos los siguientes enunciados básicos de R y R†:

Todo p es q := ∀(p, q)
Algún p es q := ∃(p, q)

Todo p hace r a todo q := ∀(p, ∀(q, r))
Todo p hace r a algún q := ∀(p, ∃(q, r))
Algún p hace r a todo q := ∃(p, ∀(q, r))
Algún p hace r a algún q := ∃(p, ∃(q, r))

Ningún p es q := ∀(p, q)
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Algún p no es q := ∃(p, q)
Ningún p hace r a todo q := ∀(p, ∀(q, r))
Ningún p hace r a algún q := ∀(p, ∃(q, r))
Algún p no hace r a todo q := ∃(p, ∀(q, r))
Algún p no hace r a algún q := ∃(p, ∃(q, r))

Dada esta sintaxis, las reglas de inferencia de R y R† son las reglas de S y S† más las 
siguientes reglas, donde p y q varían sobre átomos, c sobre términos y t sobre átomos bina-
rios o sus negaciones:

Tabla 5: Reglas de R y R†

∃(p, q)	 ∀(q, c)
⊢∃(p, c)

∀(p, q)	 ∀(p, c)
⊢∀(q, c)

∀(p, q)	 ∃(p, c)
⊢∃(q, c) ⊢∀(p, p) ∃(p, c)

⊢∃(p, p)
∀(q, c)	 ∃(p, c)

⊢∃(p, q)
∀(p, p)
⊢∀(p, c)

∃(p, ∃(q, t))
⊢∃(q, q)

∀(p, ∀(n, t)) 
	 ∃(q, n)

⊢∀(p, ∃(q, t))

∃(p, ∃(q, t)) 
	 ∀(q, n)

⊢∃(p, ∃(n, t))

∀(p, ∃(q, t)) 
	 ∀(q, n)

⊢∀(p, ∃(n, t))

[φ]
…

∃(p, p)
⊢φ

Para ilustrar el funcionamiento de estos sistemas consideremos una inferencia (válida) 
que puede ser modelada en R (pero no en S† o en A):

Tabla 6: Ejemplo de inferencia en R

Enunciado
1. Todo perro mira a todo gato.
2. Todo perro mira a algún ratón.
3. Algún ratón mira a algún gato.
⊢ Todo perro mira a algún gato.

Los siguientes sistemas en la jerarquía, RC y RC†, resultan de añadir cláusulas relativas 
a R y R†. Una cláusula relativa es una expresión tal que nos permite ofrecer inferencias 
(válidas) como las siguientes:
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Tabla 7: Ejemplo de inferencia en RC y RC†

Enunciado

1. Todos los perros son mamíferos.

⊢ Todos los que temen a los que respetan a los perros temen a todos los que respetan a 
los mamíferos.

Tabla 8: Ejemplo de inferencia en RC y RC† 

Enunciado

1. Todos los perros son mamíferos.

⊢ Todos los que temen a los que respetan a algunos perros temen a todos los que respetan 
a algunos mamíferos.

Tabla 9: Ejemplo de inferencia en RC y RC† 

Enunciado

1. Algunos perros son mamíferos.

⊢ Algunos que temen a los que respetan a algunos perros temen a algunos que respetan 
algunos mamíferos.

Las reglas de inferencia de RC y RC†, así, son las mismas de R y R† más las siguientes:

Tabla 10: Reglas de RC y RC†

∀(p, q)
⊢∀(∀(q, r), ∀(p, r))

∀(p, q)
⊢∀(∃(p, r), ∃(q, r))

∃(p, q)
⊢∀(∀(p, r), ∃(q, r))

Los siguientes sistemas en la jerarquía, RC(tr) y RC(tr)†, resultan de añadir un conjunto 
de frases adjetivas comparativas a los sistemas previos, RC y RC†. Las reglas de inferencia 
son, por tanto, las reglas de RC y RC† más las siguientes reglas:

Tabla 11: Reglas de RC(tr) y RC(tr)†

∀(p, ∃(q, r))
⊢∀(∃(p, r), ∃(q, r))

∀(p, ∀(q, r))
⊢∀(∃(p, r), ∀(q, r))

∃(p, ∀(q, r))
⊢∀(∀(p, r), ∀(q, r))

∃(p, ∃(q, r))
⊢∀(∀(p, r), ∃(q, r))

Un ejemplo de inferencia (válida) con frases adjetivas comparativas es el siguiente, 
donde la frase adjetiva comparativa es la expresión es más alto que:
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Tabla 12: Ejemplo de inferencia en RC(tr) y RC(tr)†

Enunciado
1. Toda jirafa es más alta que todo ñu.
2. Algún ñu es más alto que cualquier león.
3. Algún león es más alto que alguna zebra.
⊢ Toda jirafa es más alta que alguna zebra.

Los siguientes sistemas, RC(tr,opp) y RC(tr,opp)†, resultan de añadir un conjunto de fra-
ses adjetivas comparativas opuestas a los sistemas RC(tr) y RC(tr)†. Las reglas de inferencia 
RC(tr,opp) y RC(tr,opp)† son las reglas de RC(tr) y RC(tr)† más las siguientes reglas, donde 
el superíndice “-1” indica la presencia de una frase adjetiva comparativa opuesta:

Tabla 13: Reglas de RC(tr,opp) y RC(tr,opp)†

∀(p, ∀(q, t))
⊢∀(q, ∀(p, t−1))

∃(p, ∀(q, t))
⊢∀(q, ∃(p, t−1))

∀(p, ∃(q, r−1))
⊢∀(∀(q, r), ∀(p, r))

∃(∃(p, r−1), ∃(q, r))
⊢∃(p, ∃(q, r))

∃(∀(p, r), ∀(q, r−1))
⊢∀(p, ∀(q, r−1))

∃(∀(p, r), ∃(q, r−1))
⊢∃(q, ∀(p, r−1))

∀(p, ∃(q, r))    ∀(∃(p, r−1), ∃(n, r))
⊢∀(p, ∃(n, r))

∀(p, ∃(q, r))    ∀(∃(p, r−1), ∀(n, r))
⊢∀(p, ∀(n, r))

Un ejemplo de inferencia (válida) en este sistema es la siguiente, donde ser más grande 
que y ser más pequeño que son frases adjetivas comparativas opuestas:

Tabla 14: Ejemplo de inferencia en RC(tr,opp) y RC(tr,opp)†

Enunciado
1. Todo perro es más grande que algún erizo.
2. Todo lo que es más pequeño que un perro es más grande que algún gato.
⊢ Todo perro es más grande que un gato.

Pues bien, a modo de resumen, en la jerarquía de Moss los sistemas A, S, S†, R, RC, 
RC(tr) y RC(tr,opp) son sistemas aristotélicos; sin embargo, dada la negación completa de 
sustantivos, los sistemas R†, RC†, RC†(tr) y RC†(tr,opp) son sistemas que se ubican más allá 
de la frontera aristotélica. Todos estos sistemas, junto con la lógica de primer orden con dos 
variables (FO2), se encuentran por debajo del límite de la frontera Church-Turing, es decir, 
son sistemas decidibles; a diferencia de la lógica de primer orden (FOL). Adicionalmente, 
por su vocabulario definido con elementos de primer orden, todos los sistemas de la jerarquía 
se ubican dentro del límite de los sistemas tipo Peano-Frege. Esto contrasta, por ejemplo, con 
el sistema S≥, que no hemos considerado en este trabajo por cuestiones de espacio, pero que 
modela cuantificadores intermedios comparativos como “muchos”, “mayoría”, o “la mitad”.
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El desarrollo de esta jerarquía ofrece evidencia positiva de que, como argumenta Moss, 
es posible implementar un proyecto de lógica natural proponiendo sistemas lógicos con una 
noción modificada de variable y probando su completud para estar dentro de los límites de 
la decibilidad. Para ilustrar esto, Moss ha elaborado un mapa que nos permite visualizar su 
jerarquía (Fig. 1): más adelante volveremos a mencionarla. 

Figura 1. La jerarquía de Moss (2015)

2.2. Aspectos generales de la lógica de términos de Sommers

Fred Sommers, más cerca de Aristóteles que de Frege, estaba interesado en el razo-
namiento en lenguaje natural. Este interés resultó en el desarrollo de un sistema lógico-
algebraico conocido como Term Functor Logic (TFL) (o también ATL por Algebraic Term 
Logic) o lógica de términos y functores (Sommers, 1967; Sommers, 1982; Englebretsen, 
1987; Englebretsen, 1996; Sommers y Englebretsen, 2000; Englebretsen y Sayward, 2011).

La innovación de TFL es que asume una sintaxis terminística. Esto es de suyo interesante 
porque implica volver la mirada a las lógicas de términos, las cuales, como hemos mencio-
nado en una nota anterior, a pesar de haber sido duramente criticadas (Carnap, 1930; Rus-
sell, 1937/1900; Geach, 1972, 1980), han resurgido con fuerza después de la segunda mitad 
del siglo XX. Este resurgimiento puso de manifiesto que podemos modelar razonamiento 



118 J.-Martín Castro-Manzano

Daimon. Revista Internacional de Filosofía, nº 97 (Enero-Abril) 2026

típico de primer orden sin usar elementos lingüísticos de primer orden —como variables 
individuales o cuantificadores (cfr. Quine, 1971; Noah, 1980; Kuhn, 1983). En este contexto, 
el proyecto lógico de Sommers tiene un alcance todavía más amplio: que sea posible usar 
una lógica de términos en lugar de un sistema de primer orden no tiene nada que ver con 
el hecho sintáctico, por decirlo de algún modo, de que podemos modelar inferencia típica 
de primer orden sin cuantificadores o variables, sino con la visión más general de que el 
lenguaje natural es una fuente genuina de una lógica natural (Sommers, 2005). 

Así pues, para comenzar con una representación de enunciados (categóricos), TFL ofrece 
la siguiente gramática:3

•	 SaP := −S+P = −S−(−P) = −(−P)−S = −(−P)−(+S)
•	 SeP := −S−P = −S−(+P) = −P−S = −P−(+S)
•	 SiP := +S+P = +S−(−P) = +P+S = +P−(−S)
•	 SoP := +S−P = +S−(+P) = +(−P)+S = +(−P)−(−S)

Dada esta representación sintáctica, TFL ofrece una regla de inferencia para la silogística: 
una conclusión se sigue válidamente de un conjunto de premisas si y sólo si i) la suma de 
las premisas es algebraicamente igual a la conclusión y ii) el número de conclusiones con 
cantidad particular (viz., cero o uno) es igual al número de premisas con cantidad particular 
(Englebretsen, 1996, p. 167). Así, por ejemplo, si consideramos un silogismo válido, diga-
mos un silogismo tipo aaa-1, podemos ver cómo la aplicación de este método produce la 
conclusión correcta (Tabla 15).

Tabla 15: Una inferencia válida tipo aaa-1

Enunciado TFL
1. Todos los mamíferos son animales. -M+A
2. Todos los perros son mamíferos. -P+M
⊢ Todos los perros son animales. -P+A

En el ejemplo anterior podemos ver claramente cómo es que funciona esta regla: i) 
si sumamos las premisas obtenemos la expresión algebraica (−M+A)+(−P+M)=−M+A−
P+M=−P+A, de tal modo que la suma de las premisas es algebraicamente igual a la 
conclusión, y la conclusión es igual a −P+A, en lugar de +A−P, porque ii) el número de 
conclusiones con cantidad particular (cero en este ejemplo) es igual al número de premisas 
con cantidad particular (cero en este ejemplo).

Esta aproximación algebraica, además, es lógicamente interesante porque es capaz de 
representar y modelar inferencias relacionales, singulares y compuestas sin perder su motiva-
ción principal, a saber, que una inferencia es un proceso que ocurre entre términos. Así, por 

3	 Aquí seguimos la presentación de (Englebretsen, 1996).
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ejemplo, los siguientes casos ilustran cómo representar y modelar inferencias con enunciados 
relacionales (Tabla 16), singulares4 (Tabla 17) o compuestos5 (Tabla 18).

Tabla 16: Una inferencia válida con enunciados relacionales

Enunciado TFL

1. Algunos caballos son más rápidos que algunos 
perros. +C1+(+R12+P2)

2. Los perros son más rápidos que algunos 
hombres. -P2+(+R23+H3)

3.

Lo que es más rápido que lo que es más 
rápido que los hombres, es más rápido que los 
hombres (i.e. la relación ser más rápido que es 
transitiva).

-(+R12+(+R23+H3))+(+R13+H3)

⊢ Algunos caballos son más rápidos que algunos 
hombres. +C1+(+R13+H3)

Tabla 17: Una inferencia válida con enunciados singulares

Enunciado TFL
1. Todo hombre es mortal. -M+L
2. Sócrates es hombre. +s+M
⊢ Sócrates es mortal. +s+L

Tabla 18: Una inferencia válida con enunciados compuestos

Enunciado TFL
1. Si eres Sócrates, eres amigo de Platón. -[s]+[p]
2. Eres Sócrates. +[s]
⊢ Eres amigo de Platón. +[p]

Todos estos ejemplos están diseñados para mostrar que TFL es capaz de modelar un gran 
rango de inferencias, a saber, aquellas que la lógica de primer orden es capaz de modelar. 
Sin embargo, en cierto sentido, TFL es más expresiva que la lógica de primer orden. Con-
sideremos, por ejemplo, la siguiente inferencia (Englebretsen, 1996, p.172):

Platón educó a Aristóteles. Luego, Aristóteles fue educado por Platón.

No parece controversial afirmar que la inferencia anterior es válida, después de todo, es 
imposible que la premisa sea verdadera y que la conclusión sea falsa. Sin embargo, no es 

4	 Provisto que los términos singulares, como Sócrates, se representan con minúsculas.
5	 Dado que los enunciados se pueden representar de la siguiente manera, P:=+[p], Q:=+[q], ¬P:=−[p], P⇒Q:=−

[p]+[q], P˄Q:=+[p]+[q] y P˅Q:=−−[p]−−[q], el método se comporta resolución (cfr. Noah, 2005).
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claro cómo es que esta inferencia es válida usando la lógica clásica de primer orden. Con-
sideremos, por mor de explicación, la siguiente representación de primer orden:

Epa ⊢ Epa

En el ejemplo original es evidente que la conclusión es semánticamente equivalente a la 
premisa, y no obstante, la premisa es sintácticamente diferente a la conclusión. Idealmente, 
esta diferencia sintáctica debería ser preservada, pues aunque reconocemos que la premisa y 
la conclusión comparten el mismo significado, la voz activa y la voz pasiva no son sintácti-
camente equivalentes. Ahora bien, frente a una inferencia como esta, lo que hace la lógica 
de primer orden es evadir la situación al asumir que la diferencia sintáctica es despreciable 
porque ambos enunciados comparten el mismo contenido proposicional (cfr. Quine, 1970, 
p.35-36), pero esto nos parece una solución ad hoc: en la inferencia “p y q, por tanto, q y 
p” las conjunciones “p y q” y “q y p” también comparten el mismo contenido proposicional 
pero no por ello decimos que la diferencia sintáctica entre la premisa y la conclusión es des-
preciable. En contraste, TFL es capaz de preservar la equivalencia semántica y representar 
la diferencia sintáctica de tal manera que TFL nos permite realizar inferencias con transfor-
maciones de voz activa-pasiva (por ejemplo, aplicando Conm y Asoc (para un sumario de 
las reglas de TFL vide Apéndice B)):

+p1+(+E12+a2) ⊢ +a2+(+E12+p1)

Más todavía, consideremos otra inferencia válida (Englebretsen, 1996, p.173):

Sócrates educó a un educador de Aristóteles. Luego, alguien a quien Sócrates educó, 
educó a Aristóteles.

Una representación perspicua del razonamiento anterior en lógica de primer orden es la 
siguiente:

(∃x)(Esx˄Exa) ⊢ (∃x)(Esx˄Exa)

Sin embargo, nuevamente, esta representación no parece ser una transcripción fidedigna 
porque no permite preservar una sutil pero significativa diferencia entre la premisa y la con-
clusión, a saber, el cambio asociativo. En contraste, TFL es capaz de llevar a cabo inferencias 
con cambios asociativos (por ejemplo, aplicando Asoc):

+s1+(+E12+(+E23++a3)) ⊢ +(+s1+E12)+(+E23+a3)

Por último, consideremos otra inferencia válida de sentido común (Englebretsen, 1996, 
p.174):
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Platón educó a Aristóteles con un diálogo. Luego, Platón educó a Aristóteles.

Una posible representación de la inferencia anterior en lógica de primer orden podría ser:

(∃x)(Dx˄Epax) ⊢ Epa

Ahora bien, como las relaciones Exyz y Exy tienen aridad diferente, una inferencia intuitiva 
como la anterior no es válida prima facie, y por tanto, para que tal inferencia sea válida en 
la lógica clásica de primer orden necesitamos una justificación extralógica que sea capaz de 
conectar tales relaciones. En contraste, TFL es capaz de llevar a cabo inferencias con simpli-
ficaciones poliádicas: TFL preserva la validez de la inferencia poliádica bajo la suposición de 
sentido común de que la relación educar es poliádica (por ejemplo, aplicando Asoc y Simp):

+p1+((+E123+a2)+D3) ⊢ +p1+(+E123+a2)

Así pues, como se puede apreciar hasta este punto, el sistema TFL ofrece una peculiar 
álgebra de términos con capacidades expresivas e inferenciales interesantes relacionadas con 
el modelado de inferencias en lenguaje natural. En efecto, TFL es capaz de modelar la silo-
gística asertórica (con negación completa), la silogística relacional (con negación completa, 
verbos transitivos, adjetivos comparativos, transformaciones de voz activa-pasiva, cambios 
asociativos y simplificaciones poliádicas) y la lógica proposicional. 

Ahora bien, en otro lugar hemos ofrecido un método de árboles para TFL que preserva 
sus capacidades expresivas e inferenciales pero que reduce el número de reglas de inferencia 
y facilita las demostraciones (Castro-Manzano 2018, 2020). Como en este trabajo haremos 
uso de este método, reproducimos, brevemente, sus nociones básicas. Así, comenzamos por 
definir, como es usual y siguiendo a (D’Agostino et al, 1999; Priest, 2008), un árbol como 
un grafo acíclico conectado determinado por nodos y vértices. El nodo superior es la raíz. 
Los nodos inferiores son puntas. Cualquier camino desde la raíz hasta una punta es una 
rama. Para probar la validez de una inferencia se construye un árbol que comienza con una 
única rama cuyos nodos son premisas y la negación de la conclusión: esta es la lista inicial. 
Entonces se aplican las reglas de expansión que nos permiten extender la lista inicial:

Figura 2. Reglas de expansión 

(a) (b)
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En la Figura 2a tenemos la regla para las proposiciones universales tipo a (e) y en la 
Figura 2b tenemos la regla para las proposiciones particulares tipo i (o). Notemos que al 
aplicar una regla introducimos un índice i∈{1, 2, 3, ...}. Para las proposiciones universales 
el índice puede ser cualquier natural; para las proposiciones particulares, tiene que ser un 
nuevo natural si tales proposiciones no tienen ya un índice asignado. Además, siguiendo las 
normas de TFL, asumimos las siguientes equivalencias de negación: −(±A) = ∓A, −(±A ± 
B) = ∓A ∓ B y −(− − A − −A) = +(−A) + (−A). También, como es costumbre, decimos que 
un árbol es completo si y sólo si toda regla que puede ser aplicada ha sido aplicada. Una 
rama está cerrada si y sólo si existen términos de la forma ±Ai y ∓Ai en dos de sus nodos; 
de otro modo está abierta. Una rama cerrada se denota escribiendo ⊥ en su punta; una rama 
abierta se indica escribiendo ∞ en su punta. Un árbol está cerrado si y sólo si todas sus 
ramas están cerradas; de otro modo está abierto. Así, como es usual, decimos que A es una 
consecuencia lógica de un conjunto de términos Γ si y sólo si existe un árbol completo y 
cerrado cuya lista inicial incluye los términos de Γ y la negación de A.

3. Una traducción terminista de la lógica natural de Moss

A continuación proponemos una traducción de la lógica natural de Moss al sistema 
TFL de Sommers usando los árboles de TFL. Para alcanzar esta meta seguimos dos pasos: 
primero, transcribimos las reglas de inferencia de la jerarquía de Moss a expresiones bien 
formadas de TFL (para llevar a cabo esta transcripción utilizamos letras mayúsculas, como 
es propio de TFL); posteriormente, mostramos que tales transcripciones resultan en árboles 
completos y cerrados de TFL.

En los Cuadros 19 y 20 presentamos la traducción de los sistemas A, S y S†, y R y R†.

Tabla 19: Sistemas A, S y S†

Sistema Reglas

S† S A

⊢Todo p es p Todo p es n    Todo n es q
⊢Todo p es q
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Algún p es q
⊢Algún q es p

Algún p es q
⊢Algún p es p

Todo q es n    Algún p es q
⊢Algún p es n

Todo q es q
⊢Todo q es p

Todo q es q
⊢Todo p es q

Todo p es q
⊢Todo q es p 

Algún p es p
⊢X 

Tabla 20: Sistemas R y R†

∃(p, q)    ∀(q, c)
⊢∃(p, c)

∀(p, q)    ∀(q, c)
⊢∀(p, c)

∀(p, q)    ∃(p, c)
⊢∃(q, c)

∀(q, c)    ∃(p, c)
⊢∃(p, q)
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⊢∀(p, p) ∃(p, c)
⊢∃(p, p)

∀(p, ∀(n, t))  ∃(q, n)
⊢∀(p, ∃(q, t))

∃(p, ∃(q, t)) ∀(q, n)
⊢∃(p, ∃(n, t))

∀(p, p)
⊢∀(p, c)

∃(p, ∃(q, t))
⊢∃(q, q)

∀(p, ∃(q, t))	 ∀(q, 
n) 

⊢∀(p, ∃(n, t))
[φ] … ∃(p, p) ⊢φ

En las Tablas 21 y 22 presentamos la traducción de RC y RC†, y RC(tr) y RC(tr)†.
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Tabla 21: Sistemas RC y RC†

∀(p, q)
⊢∀(∀(q, r), ∀(p, r))

∀(p, q)
⊢∀(∃(p, r), ∃(q, r))

∃(p, q)
⊢∀(∀(p, r), ∃(q, r))

Tabla 22: Sistemas RC(tr) y RC(tr)†

∀(p, ∃(q, r))
⊢∀(∃(p, r), ∃(q, r))

∀(p, ∀(q, r))
⊢∀(∃(p, r), ∀(q, r))

∃(p, ∀(q, r))
⊢∀(∀(p, r), ∀(q, r))

∃(p, ∃(q, r))
⊢∀(∀(p, r), ∃(q, r))

Finalmente, en el Cuadro 23 presentamos la traducción de RC(tr,opp) y RC(tr,opp)†; sin 
embargo, es preciso hacer un par de aclaraciones previas: para evitar la ambigüedad entre 
los índices de los árboles y el índice de las frases adjetivas comparativas opuestas, usamos 
la expresión “★”. Y por último, es notable que algunas de las inferencias del Cuadro 23 
son válidas sólo al añadir de manera explícita una proposición que indique la oposición 
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de las frases adjetivas comparativas (i.e. una proposición de la forma -A+A★ para indicar, 
por ejemplo, que “si X es mayor que Y, Y es menor que X”). Esta adición, no obstante, no 
representa un problema para TFL, pues dicha adición simplemente significa que la frase 
comparativa es una premisa implícita.

Tabla 23: Sistemas RC(tr,opp) y RC(tr,opp)†

∀(p, ∀(q, t))
⊢∀(q, ∀(p, t−1))

∃(p, ∀(q, t))
⊢∀(q, ∃(p, t−1))

∀(p, ∃(q, r−1))
⊢∀(∀(q, r), ∀(p, r))

∃(∃(p, r−1), ∃(q, r))
⊢∃(p, ∃(q, r))

∃(∀(p, r), ∀(q, r−1))
⊢∀(p, ∀(q, r−1))

∃(∀(p, r), ∃(q, r−1))
⊢∃(q, ∀(p, r−1))

∀(p, ∃(q, r))
∀(∃(p, r−1), ∃(n, r))
⊢∀(p, ∃(n, r))

∀(p, ∃(q, r))
∀(∃(p, r−1), ∀(n, r))
⊢∀(p, ∀(n, r))
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4. Conclusiones

En este trabajo hemos ofrecido una traducción de la lógica natural de Moss a la lógica de 
términos de Sommers usando un método de árboles. El resultado de esta traducción muestra 
que la lógica de términos de Sommers es un sistema alternativo a la lógica natural de Moss 
que se encuentra más allá de la frontera de los sistemas tipo Peano-Frege, Church-Turing y 
Aristóteles pero que mantiene el poder expresivo de los sistemas que habitan dentro de los 
limites de tales fronteras:

i) 	 En efecto, TFL se encuentra más allá de la frontera de los sistemas tipo Peano-Frege 
por su naturaleza sintáctica terminística; y en la medida en que un subconjunto de 
TFL se equipara con la jerarquía de Moss, por lo menos un fragmento de TFL se 
encuentra más de allá de la frontera Church-Turing y de la frontera de los sistemas 
aristotélicos.

ii) 	Sin embargo, a pesar de lo anterior, la traducción que hemos presentado muestra que 
TFL mantiene el poder expresivo de los sistemas equivalentes en la jerarquía de Moss. 
Más todavía, TFL permite inferencias básicas que no son expresables prima facie en 
la jerarquía de Moss, como el cambio asociativo o la simplificación poliádica.

Este par de consideraciones nos permite ubicar el lugar del fragmento equivalente de 
TFL en el mapa de Moss (Figura 3):

Figura 3. El lugar de TFL en la jerarquía de Moss (adaptado de Moss (2015)
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Este resultado, así, sugiere que las lógicas de términos, lejos de estar condenadas a ser 
un episodio superado de la historia de la lógica, pueden ser usadas adecuadamente en la 
implementación de un proyecto de lógica natural, lo cual es interesante para la filosofía de la 
lógica y para la teoría de la computación. Para la filosofía de la lógica, porque promueve la 
revisión de las lógicas de términos (cfr. Veatch, 1970; Sommers, 1982; Englebretsen, 1996; 
Correia, 2017; Simons, 2020) como herramientas que pueden ser más interesantes y pode-
rosas de lo que originalmente habríamos creído (cfr. Carnap, 1930; Russell, 1937; Geach, 
1962; Geach, 1980); y para la teoría de la computación, porque no sólo nos permite reducir 
el número de reglas de la jerarquía de Moss, sino que, junto con la técnica de árboles, puede 
ser útil para la programación lógica (cfr. Mozes, 1989; Castro-Manzano y Lozano-Cobos, 
2018; Castro-Manzano, 2021).

Por último, nos gustaría añadir que en investigaciones futuras debemos reconsiderar 
dos tipos de estudios: comparativos y extensivos. Para los primeros sería necesario llevar a 
cabo una comparación más detallada con los sistemas de demostración algebraica (Carnielli, 
2005; Carnielli y Agudelo, 2011), ya que estos sistemas nos permiten reconstruir el análisis 
booleano de la silogística empleando polinomios además de que pueden extenderse para 
modelar otros sistemas lógicos. Para los segundos sería necesario extender el modelo de 
traducción a inferencias en lenguaje natural pero con operadores modales (cfr. Englebret-
sen, 1998, Malink, 2006), numéricos (cfr. Murphree, 1998) o probabilistas (cfr. Thompson, 
1986), además de modelos diagramáticos (cfr. Englebretsen, 1991), y diseños experimentales 
en psicología (cfr. Keil, 2005; Khemlani y Johnson-Laird, 2012) e inteligencia artificial (cfr. 
Mozes, 1989). 
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Apéndice A. Silogística

La silogística asertórica es una lógica de términos que tiene sus orígenes en Primeros 
analíticos y que estudia la relación de inferencia entre enunciados categóricos. Un enunciado 
categórico es un enunciado compuesto por dos términos, una cantidad y una cualidad. El 
sujeto y el predicado del enunciado se llaman términos: el término-esquema S denota el 
término sujeto y el término-esquema P denota el predicado. La cantidad puede ser universal 
(Todo) o particular (Algún) y la cualidad puede ser afirmativa (es) o negativa (no es). Estos 
enunciados se suelen representar mediante una etiqueta: “a” para los enunciados universales 
afirmativos (i.e. SaP); “e” para los universales negativos (i.e. SeP); “i” para los particulares 
afirmativos (i.e. SiP); y “o” para los particulares negativos (i.e. SoP). El uso de estas eti-
quetas nos permite identificar una secuencia de tres enunciados que se conoce como modo: 
un modo es una secuencia de tres enunciados categóricos ordenados de tal manera que 
los primeros dos enunciados son premisas y el último enunciados es una conclusión. Un 
silogismo categórico, entonces, es un modo con tres términos uno de los cuales ocurre en 
ambas premisas pero no en la conclusión. Este término especial, usualmente denotado con 
el término-esquema M, funciona como un enlace entre los términos restantes y es conocido 
como término medio. De acuerdo a la posición del término medio se pueden definir los 
cuatro arreglos o figuras que codifican los silogismos válidos (Cuadro A1).6

Tabla A1. Modos válidos de la silogística

Figura 1 2 3 4

Modo

aaa eae iai aee
eae aee aii iai
aii eio oao eio
eio aoo eio

6	 Sin pérdida de generalidad, omitimos los silogismos que requieren carga existencial.
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Apéndice B. Reglas de TFL

•	 Reglas de inferencia inmediata.
◦	 Premisa (P): Cualquier premisa o tautología puede introducirse en una prueba 

(se excluyen las tautologías que repitan el correspondiente condicional de la 
inferencia. El correspondiente condicional de una inferencia es un condicional 
cuyo antecedente es la conjunción de las premisas y cuyo consecuente es la con-
clusión).

◦	 Doble negación (DN): Pares de signos menos unarios pueden ser añadidos o 
borrados de una fórmula (i.e., --X=X). 

◦	 Negación externa (NE): Un signo menos unario puede ser distribuido dentro o 
fuera de cualquier frase (i.e., -(±X±Y)=±X±Y).

◦	 Negación interna (NI): Un signo negativo puede ser distribuido dentro o fuera de 
cualquier término-predicado (i.e., ±X-(±Y)=±X+(±Y)).

◦	 Conmutación (Conm): El signo positivo binario es simétrico (i.e., +X+Y=+Y+X).
◦	 Asociación (Asoc): El signo positivo binario es asociativo (i.e., 

+X+(+Y+Z)=+(+X+Y)+Z).
◦	 Contraposición (Contra): Los términos sujeto y predicado de una afirmación uni-

versal pueden ser negados y pueden intercambiar lugares (i.e., -X+Y=-(-Y)+(-X)).
◦	 Distribución de predicado (DP): Un término sujeto universal puede ser distribuido 

dentro o fuera de un predicado conjuntivo (i.e., -X+(+Y+Z)=+(-X+Y)+(-X+Z)) y 
un término sujeto particular puede ser distribuido dentro o fuera de un predicado 
disyuntivo (i.e., +X+ (-(-Y)-(-Z))=--(+X+Y)--(+X+Z)).

◦	 Iteración (It): La conjunción de un término consigo mismo es equivalente a dicho 
término (i.e., +X+X=X).

•	 Reglas de inferencia mediata
◦	 Dictum de omni (DON): Si un término M ocurre universalmente cuantificado en 

una fórmula y, o bien M ocurre no universalmente cuantificado o su contrario 
lógico ocurre universalmente cuantificado en otra fórmula, entonces se puede 
deducir una nueva fórmula que es exactamente como la segunda excepto que 
M ha sido reemplazada por lo menos una vez por la primera fórmula menos el 
término M universalmente cuantificado.

◦	 Simplificación (Simp): Cualquier conyunto puede ser deducido de una fórmula 
conjuntiva; de una fórmula cuantificada particularmente con un término sujeto 
conjuntivo, se puede deducir el término sujeto o un nuevo enunciado justo como 
el original pero sin uno de los conyuntos del término sujeto (i.e., de +(+X+Y)±Z 
se deduce cualquiera de las siguientes fórmulas: +X+Y, +X±Z, o +Y±Z), y de 
una fórmula cuantificada universalmente con un predicado conjuntivo se puede 
deducir un nuevo enunciado como el original pero sin uno de los conyuntos del 
término predicado (i.e., de -X±(+Y+Z) se deduce -X±Y o bien -X±Z).

◦	 Adición (Ad): Cualesquiera dos fórmulas previas en una secuencia pueden ser 
unidas para obtener una nueva fórmula, y de cualesquiera dos fórmulas universa-
les afirmativas que compartan un término sujeto común, una nueva fórmula que 
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puede ser deducida es una afirmativa universal que tiene el sujeto de las fórmulas 
anteriores y tiene la conjunción de los términos predicados de las fórmulas ante-
riores como el término predicado (i.e., de -X+Y y -X+Z se deduce -X+(+Y+Z)).


