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1. Introduccion

En este trabajo intentamos alcanzar una meta sencilla: ofrecer una traduccién de la
l6gica natural de Moss a la 16gica de términos de Sommers usando un método de arboles.
El resultado de esta traduccién muestra que la logica de términos de Sommers es un sis-
tema alternativo a la 16gica natural de Moss que i) se encuentra mds alld de la frontera de
los sistemas tipo Peano-Frege, Church-Turing y Aristételes pero que ii) mantiene el poder
expresivo de los sistemas que habitan dentro de los limites de tales fronteras —mads adelante
daremos detalles de lo que significa habitar estos confines.

Este resultado, como veremos, sugiere que las 16gicas de términos, lejos de estar con-
denadas a ser un episodio superado de la historia de la l6gica, pueden ser usadas adecuada-
mente en la implementacidn de un proyecto de 16gica natural. Para alcanzar nuestra meta
y exponer el resultado obtenido procedemos de la siguiente manera: primero hacemos una
introduccién general a la 16gica natural de Moss y a la légica de términos de Sommers
(§2), posteriormente presentamos nuestra traduccién (§3) y, por ultimo, hacemos algunas
observaciones sobre los resultados obtenidos (§4).

2. La logica natural de Moss y la logica de términos de Sommers
2.1. Aspectos generales de la l6gica natural de Moss

De acuerdo con Moss (2015), la raison d’étre de la 16gica es el estudio de la inferencia
en un lenguaje natural. Ahora bien, para estudiar la inferencia en un lenguaje natural es
costumbre hacer uso de lenguajes de orden n: la 16gica proposicional y la 16gica de primer
orden (con identidad), por ejemplo, son sistemas 16gicos definidos mediante lenguajes de
orden 0 y 1 respectivamente.

Aunque el origen de este habito tiene una historia interesante y compleja (Eklund, 1996),
estd relacionado, ciertamente, con las ventajas de orden representativo que los lenguajes
de primer orden ofrecen frente a sistemas mads tradicionales;' sin embargo, aunque esta
eleccioén sintictica —la de usar sistemas de primer orden— nos es habitual en la docencia,
la investigacion y la aplicacién de la 16gica —digamos, es la visién heredada de la 16gica
(cfr. Castro-Manzano, 2021)—, no hace falta ser hipercriticos para notar que esta vision
de la ldgica, en efecto, nos puede ser familiar, pero no por ello nos resulta natural. Woods
comenta (el énfasis es nuestro):

1 Augustus De Morgan (1860) ya habia notado la incapacidad de la l6gica de términos aristotélica para lidiar con
relaciones, pero fue Russell (1937/1900) quien popularizé la idea de que las limitaciones del programa légico
tradicional, i.e., silogistico (vide Apéndice A), se debian al andlisis de los enunciados en clave terminista como
triadas de términos sujeto y predicado unidos por una cépula. Posteriormente, Carnap (1930) generalizé esta
consideracidn a toda la 16gica tradicional al sostener que la tnica sintaxis disponible en este tipo de l6gica es
predicativa. Y si bien estos l1“’mites sintdcticos pueden parecer menores (ya que producen dificultades para la
correcta representacion de enunciados singulares, relacionales o compuestos), es la homogeneidad de términos
(Geach, 1972; 1980) la dificultad mds grave que este tipo de 16gicas enfrentan.

Daimon. Revista Internacional de Filosofia, n° 97 (Enero-Abril) 2026



Una traduccion terminista de la logica natural de Moss 111

It is no secret that classical logic and its mainstream variants aren’t much good for
human inference as it actually plays out in the conditions of real life —in life on
the ground, so to speak. It isn’t surprising. Human reasoning is not what the modern
orthodox logics were meant for. The logics of Frege and Whitehead & Russell were
purpose-built for the pacification of philosophical perturbation in the foundations of
mathematics, notably but not limited to the troubles occasioned by the paradox of
sets in their application to transfinite arithmetic. (Woods, 2016: 404).

Ciertamente, si bien la 16gica de primer orden (cldsica, segiin Woods) ha sido fundamental
para el estudio de la inferencia en general, no deja de extrafiarnos que, a pesar de su finalidad
original en la fundamentaciéon de las matemdticas, sea utilizada constantemente como una
herramienta bona fide para la representacién de razonamiento en lenguaje natural. Considere-
mos, a este efecto, lo que hemos denominado “el reto de Bar-Hillel” (el énfasis es nuestro):

I challenge anybody here to show me a serious piece of argumentation in natural lan-
guages that has been successfully evaluated as to its validity with the help of formal
logic. I regard this fact as one of the greatest scandals of human existence. Why has
this happened? How did it come to be that logic which, at least in the views of some
people 2,300 years ago, was supposed to deal with evaluation of argumentation in
natural languages, has done a lot of extremely interesting and important things, but
not this? (Stall, 1969: 256).

Para Moss, este desajuste entre l6gica y lenguaje natural ha tenido dos efectos: una desaten-
cién al lenguaje natural y una sobrevaloracion de los sistemas de primer orden. Estos efectos
son problemadticos l6gica y computacionalmente porque, por un lado, los sistemas de primer
orden son incapaces de modelar ciertas inferencias interesantes de lenguaje natural, como la
simplificacion poliddica; y por otro lado, ciertos fragmentos de primer orden son indecidibles.?

Ante esta situacién, el proyecto de Moss pretende mostrar que ciertas partes signifi-
cativas del razonamiento en lenguaje natural pueden llevarse a cabo usando lenguajes de
primer orden —con ciertas modificaciones sinticticas, como veremos— pero en sistemas
decidibles. Para alcanzar esta meta, Moss propone una serie de sistemas ldgicos que se
introducen de manera incremental, del sistema mds simple al mds complejo, y demuestra
que cada uno de ellos es completo: a esta serie la llamamos “jerarquia de Moss”. Para los
fines de este trabajo, a continuacién exponemos la jerarquia de Moss mediante la exposicién
de su sintaxis y sus reglas de inferencia —por cuestiones de espacio y por las metas de este
trabajo, omitimos las pruebas de completud.

2 En este punto, como una revisora nos ha hecho notar, alguien podria observar que la l6gica de primer orden
trata de estudiar la (in)validez del razonamiento simpliciter, es decir, independientemente de su expresion
en un lenguaje natural. Esto nos llevaria a considerar el problema de la representacién del razonamiento en
lenguaje natural como si fuera un problema externo, extra l6gico. Esta observacion tiene algo de verdad porque,
ciertamente, este no es un problema propio de la 16gica de primer orden, sino mds bien de su ensefianza y su
aplicacion en la argumentacion o en la filosoffa del lenguaje; sin embargo, el hecho de que el problema pueda
ser externo no implica que no sea un problema con sus propios méritos, y son justamente problemas externos
los que han disparado las discusiones sobre la naturaleza de la 16gica, o mejor dicho, las l6gicas, y su relacion
con la argumentacién y la filosoffa del lenguaje.
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112 J.-Martin Castro-Manzano

La jerarquia de Moss comienza con una légica que incluye el cuantificador “Todo” (este
sistema se llama A por el cuantificador universal, por All). La sintaxis de A depende de un

conjunto infinito de sustantivos p, q,T, ..., que son ttiles para formar enunciados de la forma:

Todopesq

La semdntica de las expresiones de A depende de un modelo M que se define, como es
usual, mediante un conjunto M y una interpretacion I[p]IEM para cada sustantivo p de tal
manera que:

M = Todo p es g si y solo si I[p]ICI[q]l.

Y las reglas de inferencia de A son dos:

Tabla 1: Reglas de A

Todo p esn Todonesq
+Todo pes p FTodo p es q

Dada esta informacidn, notar que el sistema A es, en efecto, completo, es trivial. Lo que
hace Moss, posteriormente, es agregar nuevas reglas de inferencia al sistema A pero preser-
vando completud. Asi, para generar el siguiente sistema, S, Moss introduce el cuantificador
“Algin” para producir enunciados de la forma:

Algin pes q

La semantica de este sistema se define, entonces, del siguiente modo:

M = Todo p es q si y s6lo si I[p]I€I[q]l.
M = Algtin p es q si y sélo si [p]INI[q]l=J.

Y las reglas de inferencia, en consecuencia, son las siguientes:

Tabla 2: Reglasde Ay S

Todo p esn Todonesq
FTodopesp
FTodo pesq
Alginpesq Alginpesq Todo q es n Alginpesq
+Algtin q es p +Algtn p es p FAlgiin p es n
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Es claro, hasta este punto, cudl es la idea de la jerarquia: todo lo que se puede probar en
un sistema inferior (digamos A) se puede probar en un sistema superior (digamos S) pero
no a la inversa.

El siguiente sistema, S7, resulta de afiadir los d&tomos complementarios, p, con la interpre-
tacion I[p]l=M/I[p]l de tal manera que S* gana expresividad sobre S en la medida en que en
St se pueden expresar los siguientes enunciados que no se pueden expresar en A o en S (de
ahora en adelante, todos los sistemas anotados con “f” representan sistemas con negacion
completa):

Tabla 3: Enunciados de S 'y S*

Todopesq
Alginpesq
Todo p es g = Ningtin p es q St
Algtn p es g = Algtin pno es q
Alginpes g

En consecuencia, las reglas de inferencia para S y S* son las siguientes:

Tabla 4: Reglas de S'y S*

TodopesnTodonesq | Todoqesg | Todogesq
+Todopesp
+Todopesq +Todoqesp | FTodopesq
Alginpesq | Alginpesq | TodogesnAlginpesq| Todopesg | Alginpesp
FAlgin qesp | FAlglinpesp FAlgin p es n +Todo qesp X

Como se puede apreciar hasta este momento, con estos elementos de la jerarquia, Moss
logra reconstruir la semdntica y la completud de lo que conocemos como silogistica asertd-
rica (vide Apéndice A). Sin embargo, afiadiendo variables para representar verbos transitivos
—1lo cual es una variacion sintdctica en un sistema tipico de primer orden—, Moss produce
un par de sistemas expresivamente mds poderosos: los sistemas relacionales R y R'. Para
ejemplificar las capacidades expresivas de R y R', donde r expresa un verbo transitivo,
consideremos los siguientes enunciados bdsicos de R y R':

Todopesq:=V(p,q)
Alginpesq:=3(p,q)

Todo p hace r a todo q := V(p, ¥(q, 1))
Todo p hace r a algin q := V(p, 3(q, 1))
Algtin p hace r a todo q := 3(p, V(q, 1))
Algun p hace r a algiin q := 3(p, 3(q, 1))

Ningtn p es q := Y(p, g)
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Alginpnoesq:=3(p,q)

Ningtin p hace r a todo q := Y(p, ¥(q, 1))
Ningtin p hace r a algin q := V(p, 3(q, 1))
Algtin p no hace r a todo q := 3(p, V(q, 1))

Algtin p no hace r a algin q := 3(p, 3(q, 1))

Dada esta sintaxis, las reglas de inferencia de R y R" son las reglas de S y S mds las

siguientes reglas, donde p y q varian sobre dtomos, ¢ sobre términos y t sobre 4tomos bina-
rios o sus negaciones:

Tabla 5: Reglas de Ry Rf

i, 9 V(g,©) V(p,q) Y(p,c)
—3(p, ¢) FY(q, c)
V(p,q) 3(p,c) A(p,©)
+3(q, ©) (. p) +3(p, p)
V(q,©) 3(p,¢) V(p,p) 3(p, (g, 1)
+3(p, ) FY(p,c) +3(q,q)
V(p, V(n, 1)) 1(p, 3(q, 1)
3(q, n) V(q,n)
FY(p, 3(q, 1) F3(p, 3(n, 1))
Y(p. 3(q. 1) o]
V(q,n)
FY(p, 3(n, ) 3(}_’5)

Para ilustrar el funcionamiento de estos sistemas consideremos una inferencia (vélida)
que puede ser modelada en R (pero no en STo en A):

Tabla 6: Ejemplo de inferencia en R

Enunciado
1. Todo perro mira a todo gato.
2. Todo perro mira a algin ratén.
3. Algin ratén mira a algtn gato.
+ Todo perro mira a algun gato.

Los siguientes sistemas en la jerarquia, RC y RCY, resultan de afadir cldusulas relativas
a Ry R'. Una cldusula relativa es una expresion tal que nos permite ofrecer inferencias
(vélidas) como las siguientes:
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Tabla 7: Ejemplo de inferencia en RC y RCY

Enunciado

1. Todos los perros son mamiferos.

Todos los que temen a los que respetan a los perros temen a todos los que respetan a
los mamiferos.

Tabla 8: Ejemplo de inferencia en RC y RCY

Enunciado

1. Todos los perros son mamiferos.

Todos los que temen a los que respetan a algunos perros temen a todos los que respetan
a algunos mamiferos.

Tabla 9: Ejemplo de inferencia en RC y RCY

Enunciado

1. Algunos perros son mamiferos.

Algunos que temen a los que respetan a algunos perros temen a algunos que respetan
algunos mamiferos.

Las reglas de inferencia de RC y RCY, asi, son las mismas de R y R" mds las siguientes:

Tabla 10: Reglas de RC' y RC*

v(p,q) V(p,q) i(p,q)
FY(¥(q, 1), Y(p, 1)) FY(3(p, 1), 3(q, 1)) FY(Y(p, 1), 3(q, 1))

Los siguientes sistemas en la jerarquia, RC(tr) y RC(tr)?, resultan de afiadir un conjunto
de frases adjetivas comparativas a los sistemas previos, RC y RCf. Las reglas de inferencia
son, por tanto, las reglas de RC y RC' mds las siguientes reglas:

Tabla 11: Reglas de RC(tr) y RC(tr)*

V(p, 3(q. 1) V(p, V(q, 1)) A(p, Y(q, 1)) 3(p, 3(q, 1)
FY(3(p, 1), 3(q,1) | FY(E(p,1),V¥(q,1) | FY(¥(p,1),V(q,1)) | FY(¥(p,r),3(q,1)

Un ejemplo de inferencia (vélida) con frases adjetivas comparativas es el siguiente,
donde la frase adjetiva comparativa es la expresion es mds alto que:
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Tabla 12: Ejemplo de inferencia en RC(tr) y RC(tr)*

Enunciado
1. Toda jirafa es mds alta que todo fiu.
2. Algtn fiu es mds alto que cualquier ledn.
3. Algtn le6n es mds alto que alguna zebra.
+ Toda jirafa es mds alta que alguna zebra.

Los siguientes sistemas, RC(tr,opp) y RC(tr,opp)T, resultan de afiadir un conjunto de fra-
ses adjetivas comparativas opuestas a los sistemas RC(#r) y RC(tr)’. Las reglas de inferencia
RC(tropp) y RC(tr,opp)’ son las reglas de RC(tr) y RC(tr)" mas las siguientes reglas, donde
el superindice ““!”” indica la presencia de una frase adjetiva comparativa opuesta:

Tabla 13: Reglas de RC(tr,opp) y RC(tr,opp)*

V(p,V(q. 1) 3(p, V(q, 1) V(p,d(q,. ™)
FY(q, Y(p, ™)) FY(q, 3(p, t1) FY(Y(q,1), ¥(p, 1))
A(3(p, Y, (g, 1) A(¥(p, 1), ¥(q, 1)) AV¥(p, 1), 3(q, )
+3(p, 3(q, 1) FY(p, Y(q, 1)) +3(q, V(p, 1))
Y(p,3(q,1))  Y(E(p,r?),3I(n,1) V(p,3(g,1)  Y(E(p,r),V(n,r)
FY(p, 3(n, 1)) FY(p, V(n, 1))

Un ejemplo de inferencia (vélida) en este sistema es la siguiente, donde ser mds grande
que 'y ser mds pequefio que son frases adjetivas comparativas opuestas:

Tabla 14: Ejemplo de inferencia en RC(tr,opp) y RC(tr,opp)*

Enunciado
1. Todo perro es mas grande que algin erizo.
2. Todo lo que es més pequefio que un perro es mds grande que algtin gato.
+ Todo perro es mds grande que un gato.

Pues bien, a modo de resumen, en la jerarquia de Moss los sistemas A, S, S, R, RC,
RC(tr) y RC(tr,opp) son sistemas aristotélicos; sin embargo, dada la negacion completa de
sustantivos, los sistemas R, RC*, RC(tr) y RC(tr,opp) son sistemas que se ubican mds alld
de la frontera aristotélica. Todos estos sistemas, junto con la ldgica de primer orden con dos
variables (FO?), se encuentran por debajo del limite de la frontera Church-Turing, es decir,
son sistemas decidibles; a diferencia de la 16gica de primer orden (FOL). Adicionalmente,
por su vocabulario definido con elementos de primer orden, todos los sistemas de la jerarquia
se ubican dentro del limite de los sistemas tipo Peano-Frege. Esto contrasta, por ejemplo, con
el sistema $>, que no hemos considerado en este trabajo por cuestiones de espacio, pero que

LLIY3

modela cuantificadores intermedios comparativos como “muchos”, “mayorfa”, o “la mitad”.
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El desarrollo de esta jerarquia ofrece evidencia positiva de que, como argumenta Moss,
es posible implementar un proyecto de l6gica natural proponiendo sistemas 16gicos con una
nocién modificada de variable y probando su completud para estar dentro de los limites de
la decibilidad. Para ilustrar esto, Moss ha elaborado un mapa que nos permite visualizar su
jerarquia (Fig. 1): mds adelante volveremos a mencionarla.

FoL

FO? + trans _

RC(tr, opp)

RC( tr)

FO? .
Ret

Figura 1. La jerarquia de Moss (2015)
2.2. Aspectos generales de la l6gica de términos de Sommers

Fred Sommers, mds cerca de Aristételes que de Frege, estaba interesado en el razo-
namiento en lenguaje natural. Este interés resulté en el desarrollo de un sistema légico-
algebraico conocido como Term Functor Logic (TFL) (o también ATL por Algebraic Term
Logic) o légica de términos y functores (Sommers, 1967; Sommers, 1982; Englebretsen,
1987; Englebretsen, 1996; Sommers y Englebretsen, 2000; Englebretsen y Sayward, 2011).

La innovacién de TFL es que asume una sintaxis terministica. Esto es de suyo interesante
porque implica volver la mirada a las 16gicas de términos, las cuales, como hemos mencio-
nado en una nota anterior, a pesar de haber sido duramente criticadas (Carnap, 1930; Rus-
sell, 1937/1900; Geach, 1972, 1980), han resurgido con fuerza después de la segunda mitad
del siglo XX. Este resurgimiento puso de manifiesto que podemos modelar razonamiento
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tipico de primer orden sin usar elementos lingiiisticos de primer orden —como variables
individuales o cuantificadores (cfr. Quine, 1971; Noah, 1980; Kuhn, 1983). En este contexto,
el proyecto l6gico de Sommers tiene un alcance todavia mds amplio: que sea posible usar
una légica de términos en lugar de un sistema de primer orden no tiene nada que ver con
el hecho sintéctico, por decirlo de algliin modo, de que podemos modelar inferencia tipica
de primer orden sin cuantificadores o variables, sino con la visiéon mds general de que el
lenguaje natural es una fuente genuina de una légica natural (Sommers, 2005).

Asi pues, para comenzar con una representacién de enunciados (categéricos), TFL ofrece
la siguiente gramadtica:3

*  SaP:=-S+P=-S—(-P) = —(-P)-S = ~(-P)—(+S)
¢  SeP:=-S-P=-S—(+P) = -P-S = —-P—(+S)
*  SiP:=+S4P = +S—(-P) = +P+S = +P-(-S)
*  SoP:=+S-P=+S—(+P) = +(-P)+S = +(-P)—(-S)

Dada esta representacion sintictica, TFL ofrece una regla de inferencia para la silogistica:
una conclusién se sigue védlidamente de un conjunto de premisas si y sélo si i) la suma de
las premisas es algebraicamente igual a la conclusién y ii) el nimero de conclusiones con
cantidad particular (viz., cero o uno) es igual al nimero de premisas con cantidad particular
(Englebretsen, 1996, p. 167). Asi, por ejemplo, si consideramos un silogismo valido, diga-
mos un silogismo tipo aaa-1, podemos ver cémo la aplicacion de este método produce la
conclusion correcta (Tabla 15).

Tabla 15: Una inferencia valida tipo aaa-1

Enunciado TFL
1. Todos los mamiferos son animales. -M+A
2. Todos los perros son mamiferos. -P+M
+ Todos los perros son animales. -P+A

En el ejemplo anterior podemos ver claramente como es que funciona esta regla: i)
si sumamos las premisas obtenemos la expresién algebraica (-M+A)+(—P+M)=—M+A-
P+M=-P+A, de tal modo que la suma de las premisas es algebraicamente igual a la
conclusidn, y la conclusion es igual a —P+A, en lugar de +A—-P, porque ii) el nimero de
conclusiones con cantidad particular (cero en este ejemplo) es igual al niimero de premisas
con cantidad particular (cero en este ejemplo).

Esta aproximacién algebraica, ademds, es logicamente interesante porque es capaz de
representar y modelar inferencias relacionales, singulares y compuestas sin perder su motiva-
cion principal, a saber, que una inferencia es un proceso que ocurre entre términos. Asi, por

3 Aqui seguimos la presentacién de (Englebretsen, 1996).
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ejemplo, los siguientes casos ilustran cémo representar y modelar inferencias con enunciados
relacionales (Tabla 16), singulares* (Tabla 17) o compuestos’ (Tabla 18).

Tabla 16: Una inferencia valida con enunciados relacionales

Enunciado TFL
Algunos caballos son mds rapidos que algunos
perros.

Los perros son mds rdpidos que algunos
hombres.

+Ci+(+R12+P2)

-Pr+(+R23+H3)

Lo que es més rdpido que lo que es mds
rapido que los hombres, es mds rdapido que los
hombres (i.e. la relacion ser mds rdpido que es
transitiva).

Algunos caballos son mas rapidos que algunos
hombres.

-(+R12+(+R23+H3))+(+R13+H3)

+Ci+(+R13+H3)

Tabla 17: Una inferencia vdlida con enunciados singulares

Enunciado TFL
1. Todo hombre es mortal. -M+L
2. Sécrates es hombre. +s+M
+ Sécrates es mortal. +s+L

Tabla 18: Una inferencia vélida con enunciados compuestos

Enunciado TFL
1. Sieres Sécrates, eres amigo de Platon. -[s]+[p]
2. Eres Sécrates. +[s]
+ Eres amigo de Platon. +[p]

Todos estos ejemplos estdn disefiados para mostrar que 7FL es capaz de modelar un gran
rango de inferencias, a saber, aquellas que la 16gica de primer orden es capaz de modelar.
Sin embargo, en cierto sentido, TFL es mds expresiva que la l6gica de primer orden. Con-
sideremos, por ejemplo, la siguiente inferencia (Englebretsen, 1996, p.172):

Platon educo a Aristoteles. Luego, Aristoteles fue educado por Platon.

No parece controversial afirmar que la inferencia anterior es vélida, después de todo, es
imposible que la premisa sea verdadera y que la conclusién sea falsa. Sin embargo, no es

4 Provisto que los términos singulares, como Sdcrates, se representan con mintsculas.
5 Dado que los enunciados se pueden representar de la siguiente manera, P:=+[p], Q:=+[q], =P:=—[p], P=>Q:=—
[pl+lql, P"O:=+[pl+lq] y P'Q:=—I[pl—Iq], el método se comporta resolucién (cfr. Noah, 2005).
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claro como es que esta inferencia es vélida usando la l6gica cldsica de primer orden. Con-
sideremos, por mor de explicacion, la siguiente representacion de primer orden:

Epa v Epa

En el ejemplo original es evidente que la conclusion es semdnticamente equivalente a la
premisa, y no obstante, la premisa es sinticticamente diferente a la conclusién. Idealmente,
esta diferencia sintdctica deberia ser preservada, pues aunque reconocemos que la premisa y
la conclusién comparten el mismo significado, la voz activa y la voz pasiva no son sintdcti-
camente equivalentes. Ahora bien, frente a una inferencia como esta, lo que hace la légica
de primer orden es evadir la situacién al asumir que la diferencia sintictica es despreciable
porque ambos enunciados comparten el mismo contenido proposicional (cfr. Quine, 1970,
p.35-36), pero esto nos parece una solucién ad hoc: en la inferencia “p y g, por tanto, g y
p” las conjunciones “py ¢” y “q y p” también comparten el mismo contenido proposicional
pero no por ello decimos que la diferencia sintdctica entre la premisa y la conclusién es des-
preciable. En contraste, TFL es capaz de preservar la equivalencia seméntica y representar
la diferencia sintéctica de tal manera que 7FL nos permite realizar inferencias con transfor-
maciones de voz activa-pasiva (por ejemplo, aplicando Conm y Asoc (para un sumario de
las reglas de TFL vide Apéndice B)):

+p1+(+E2+a2) - +ar+(+Ei24p1)
Mais todavia, consideremos otra inferencia vélida (Englebretsen, 1996, p.173):

Socrates educo a un educador de Aristoteles. Luego, alguien a quien Socrates educd,
educd a Aristoteles.

Una representacion perspicua del razonamiento anterior en 16gica de primer orden es la
siguiente:

(3x)(Esx"Exa) + (Ax)(Esx"Exa)
Sin embargo, nuevamente, esta representacion no parece ser una transcripcion fidedigna
porque no permite preservar una sutil pero significativa diferencia entre la premisa y la con-

clusidn, a saber, el cambio asociativo. En contraste, TFL es capaz de llevar a cabo inferencias
con cambios asociativos (por ejemplo, aplicando Asoc):

+81+(+E o+ (+Exs+a3)) F +(+s1+E12)+(+E23+a3)

Por ultimo, consideremos otra inferencia vélida de sentido comin (Englebretsen, 1996,
p.174):
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Platon educo a Aristoteles con un didlogo. Luego, Platon educd a Aristoteles.

Una posible representacion de la inferencia anterior en l6gica de primer orden podria ser:

(3x)(Dx"Epax) + Epa

Ahora bien, como las relaciones Exyz y Exy tienen aridad diferente, una inferencia intuitiva
como la anterior no es vélida prima facie, y por tanto, para que tal inferencia sea vélida en
la l6gica clasica de primer orden necesitamos una justificacion extraldgica que sea capaz de
conectar tales relaciones. En contraste, TFL es capaz de llevar a cabo inferencias con simpli-
ficaciones poliddicas: TFL preserva la validez de la inferencia poliddica bajo la suposicién de
sentido comun de que la relacién educar es poliddica (por ejemplo, aplicando Asoc y Simp):

+p1+((+Ei23+a2)4+D3) - +pi+(+Ei23+a2)

Asfi pues, como se puede apreciar hasta este punto, el sistema 7FL ofrece una peculiar
dlgebra de términos con capacidades expresivas e inferenciales interesantes relacionadas con
el modelado de inferencias en lenguaje natural. En efecto, TFL es capaz de modelar la silo-
gistica asertérica (con negacion completa), la silogistica relacional (con negacién completa,
verbos transitivos, adjetivos comparativos, transformaciones de voz activa-pasiva, cambios
asociativos y simplificaciones poliddicas) y la l6gica proposicional.

Ahora bien, en otro lugar hemos ofrecido un método de drboles para TFL que preserva
sus capacidades expresivas e inferenciales pero que reduce el nimero de reglas de inferencia
y facilita las demostraciones (Castro-Manzano 2018, 2020). Como en este trabajo haremos
uso de este método, reproducimos, brevemente, sus nociones basicas. Asi, comenzamos por
definir, como es usual y siguiendo a (D’Agostino et al, 1999; Priest, 2008), un drbol como
un grafo aciclico conectado determinado por nodos y vértices. El nodo superior es la raiz.
Los nodos inferiores son puntas. Cualquier camino desde la raiz hasta una punta es una
rama. Para probar la validez de una inferencia se construye un arbol que comienza con una
unica rama cuyos nodos son premisas y la negacion de la conclusion: esta es la lista inicial.

Entonces se aplican las reglas de expansioén que nos permiten extender la lista inicial:

Figura 2. Reglas de expansion

+A+B
-A+B |
AN +A’
-A" +B \
+B'
(@) (b)

Daimon. Revista Internacional de Filosofia, n° 97 (Enero-Abril) 2026



122 J.-Martin Castro-Manzano

En la Figura 2a tenemos la regla para las proposiciones universales tipo a (e) y en la
Figura 2b tenemos la regla para las proposiciones particulares tipo i (0). Notemos que al
aplicar una regla introducimos un indice ie{1, 2, 3, ...}. Para las proposiciones universales
el indice puede ser cualquier natural; para las proposiciones particulares, tiene que ser un
nuevo natural si tales proposiciones no tienen ya un indice asignado. Ademds, siguiendo las
normas de TFL, asumimos las siguientes equivalencias de negacién: —(xA) = FA, —(zA +
B)=FA¥FBy—-(—-A--A)=+(-A) + (-A). También, como es costumbre, decimos que
un drbol es completo si 'y sélo si toda regla que puede ser aplicada ha sido aplicada. Una
rama estd cerrada si y solo si existen términos de la forma +Al y ¥Al en dos de sus nodos;
de otro modo estd abierta. Una rama cerrada se denota escribiendo L en su punta; una rama
abierta se indica escribiendo % en su punta. Un drbol estd cerrado si y sélo si todas sus
ramas estdn cerradas; de otro modo estd abierto. Asi, como es usual, decimos que A es una
consecuencia logica de un conjunto de términos I' si y sélo si existe un arbol completo y
cerrado cuya lista inicial incluye los términos de I' y la negacién de A.

3. Una traduccion terminista de la l6gica natural de Moss

A continuacién proponemos una traduccion de la 16gica natural de Moss al sistema
TFL de Sommers usando los drboles de TFL. Para alcanzar esta meta seguimos dos pasos:
primero, transcribimos las reglas de inferencia de la jerarquia de Moss a expresiones bien
formadas de TFL (para llevar a cabo esta transcripcién utilizamos letras mayusculas, como
es propio de TFL); posteriormente, mostramos que tales transcripciones resultan en drboles
completos y cerrados de TFL.

En los Cuadros 19 y 20 presentamos la traduccién de los sistemas A, Sy S,y Ry R'.

Tabla 19: Sistemas A, Sy §°

Sistema Reglas
Todo pesn Todones q
FTodopesp +Todopesq
-N+Q
—P+N
F-P+Q
F—P+P —(=P+Q)
—(—P+P) +P-Q
+P—-P |
St S|A | +P!
+P! o
P Q
_ 1 1
i -p +N
1
_N! +Q'
i 1
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Alginpesq Alginpesq Todoqesn Alginpesq
+Algin q es p +Algun p es p +Algin p es n
—Q+N
+P+Q +P+Q +P+Q
F+Q+P F+P+P F+P+N
—-(+Q+P) —(+P+P) —(+P+N)
-Q-P _P_P —P ‘f N
| !
+P! +P! w
\ | +Q!
+Q* +Q
7Pl 7N1
_Ql _pt _p! _pt L
i 1 1 i -Q' +N!
1 1
Todo q es g Todoges q Todo p es g Alginpesp
+Todo q es p FTodopesq FTodoqesp X
-Q+(-Q) P (-Q)
F-Q+P -(-@+Q F—Q+(-P)
—(-Q+P) ey ~(~Q+(-P)) +P—P
+Q-P P-Q +Q—(=P) FX
1 1 1 —X
+Q U7 +Q |
‘ _ 0l Pl
_p! Q _(_P)l +|
1/\ 1 4pt _p!
—Q! Q! *(;ch) +S /\ I
1 *Ql n _Pl _Ql
L us 1
Tabla 20: Sistemas R y Rt
ip.q) VY@ | Y(p.q)  ¥(@.c) | V(.9  3p.0 | V(e 3.0
F3(p, ©) FY(p, ) +3(q,¢) F3(p, @)
+P+Q —P+Q -P+Q —Q-¢
-Q+C -Q+C +P+C +P+C
F+P+C F—P+C F+Q+C F+P-Q
—(+P+ Q) —(-P+0Q) ~(+Q+C) —(+P-Q)
—p-C +P—C -Q-C —-P+Q
+P! +‘P‘ +|F’1 +‘P'
|
+Q' —c! +|C1 +C!
_Pl/\_cl _ljl/\+QJ —pt Q! _p! Q!
& ~ 1 _(y/\+c 1 _@/\_Cl _& e
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FY(p. p) A(p.©) ¥(p,Y(n,0) 3(g,n) | 3(p, (g, 1) V(q,n)
’ =3(p. p) FY(p, 3(q, 1)) F3(p, I(n, t))
~P+(-N+T)
+Q+N
F—P+(+Q+T) P (eQeT)
—(—P+(+Q+T)) Q4N
+P—(+Q+T) FaPL(+N4T)
P | —[iPI[INiT))
F-P+P F+P+P Q! N T)
_(—P+P —(+P+P) L L,
(+P -P | —P-P i it
| I:’l +P? +Q
+ 1
+P1 | 7(+Q|+T)2 +T
| L +C! Q-1 .
- p2 (—N+ T)? B T
B (N4TR
1 _Pl _Pl N T 7@[/\+Nl
1 1 1/\ 1 n /\ l
—N +T —N -7
1 l/\ 1 h h
-Q =T
Y(p, 3(q, t Y(q,
Y(p,p) I(p, 3(q, 1) (p, 3(q, v) (q ;
FY(p, ©) F3(q. Q) n) [¢] ... 3(p,p)
’ ’ FY(p, I(n, 1)
P+ (+Q+T)
-Q+N
FP+(+N+T)
—P—P P+ (+Q+T) SCRi i)
F-P+C F+Q+Q HP—(+N+T)
p +C‘| —(+Q+Q) +|P‘
o -Q-Q | —(+¢@) +(+P - P)
+F’—C ‘ 1 _(+N+-|I)1 _F[::\
+I31 +\P oy +p
| +Q' P QT
c ‘ 1 | —(£)' +P—P!
_ +T! +Q! Fp 1
| 1
1 1 /\ +T!
P —P -Q' -Q! /\ 1
- - 1 1 -Q +N
Lo -

En las Tablas 21 y 22 presentamos la traduccién de RC 'y RC7, y RC(tr) y RC(tr)t.
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P+ (+Q+R)
F—(+P+R)+ (+Q +R)
—(=(+P+R)+ (+Q +R})

+(+P+R) - (+Q +R)

v(p.q) v(p.q) 3. @)
FY(Y(q,1), V(p, 1)) HY(3(p, 1), 3(q, 1)) FY(Y(p, 1), 3(q, 1))
+P+Q
—P+Q -P+Q F—(-P +R) + (+Q + R)
F—(-Q+R)+ (=P +R) F—(+P+R)+ (+Q+R) —(=(=P +R) + (+Q + R))
—(=(-Q+R)+ (=P +R)) —(—(+P+R) + (+Q + R)) +(-P+R)— (+Q +R)
+H-Q+R)—-(-P+R) +(+P+R) = (+Q+R) |
. | +p!
-Q+R +P1 |
| 1
(P +R)' NS -
L | —P +R?
+|P ~(+Q+R)' -
_R! —Q-R! —(+Q+R)"
T -Q-FR?
_Pl +Q1 —Pl +Ql
n 1 —p! +R?
-Q' +R! -Q! —R! = 1
1 1 1 1 -Q -R
Tabla 22: Sistemas RC(tr) y RC(tr)*
V(p, 3(q, 1) V(p, V(q, 1) 3(p, V(q, 1)) A(p, 3(q, 1))
FY(3(p, 1), 3(q,1) | FYE(Pp, 1), ¥(q,1) | HY(Y(p,1), Y(q,1)) EY(Y(p, 1), 3(q,1))
+P+ (+Q +R)
+P+(-Q+R) F—(—P+R)+ (+Q+R)

F—(-P+R)+(-Q+R)

~P+{-Q+R) —(—(-P+R)+(—Q+R))
F—(+P +R)+ (-Q+R)| *+(-P+ R)FI*QM.‘
~(~(+P +R)+ (-Q+R) _piR
+(+P+R) - (—Q+R) |
L +Q'
+P |
| -R!
+R! L,
+p?
—(— ! \
(—-Q+R) Qi+ R2
P +(-Q+R) —p? +R?
@ +R!

—(=(=P+R)+ (+Q+R))
+(-P+R) — (+Q+R)

Finalmente, en el Cuadro 23 presentamos la traduccién de RC(tr,opp) y RC(tr,opp)’; sin
embargo, es preciso hacer un par de aclaraciones previas: para evitar la ambigiiedad entre
los indices de los arboles y el indice de las frases adjetivas comparativas opuestas, usamos
la expresion “”. Y por dltimo, es notable que algunas de las inferencias del Cuadro 23
son vélidas sélo al afiadir de manera explicita una proposiciéon que indique la oposicién
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de las frases adjetivas comparativas (i.e. una proposicién de la forma -A+A* para indicar,
por ejemplo, que “si X es mayor que Y, Y es menor que X”). Esta adicién, no obstante, no
representa un problema para TFL, pues dicha adicion simplemente significa que la frase

comparativa es una premisa implicita.

Tabla 23: Sistemas RC(tr,opp) y RC(tr,opp)*

—P+(-Q+T)
F—Q+(-P+T%)
—(=Q+(-P+T%))
+Q— (P +T%)

+P+(-Q+T)

F=Q+(+P+T%)
—(—Q+ (+P+T¥))
+Q - (+P+T*)
\
+pP!
N
\
+T!
|
+Q*
—P—T*
_p! _w!
1
-7t LT*!
1 1

F—(—Q+R)+(-P+R)
—(—=(—Q+R)+ (-=P+R))
+(—Q+R) - (-P+R)

-Q+R!
+P —R!
|
+P!
ke
“P1 Qi R*!
L |
+Q'
|
+R*!
—Q! +R!
L L

V(p,V(q, 1) A(p, VY(g, 1) V(p,d(q,r™) 33, ), 3(q, 1)
FY(q, V(p, t1) FY(q, 3(p, t1)) FY(Y(q,1), ¥(p, 1)) H3(p, 3(q, 1))
—P+(+Q+R¥*)

+(+P +R*) + (+Q +R)
F+P+(+Q+R)
—(+P+(+Q+R))
~-P—(+Q+R)
+‘Pl
+Fi*l
|
+Q!

+R!

1/\
_p Q-

A(V(p, 1), ¥(q, 1))
FY(p, Y(q, 1)

A(V(p, 1), 3(q, ")
F3(q, Y(p, 1)

V(p, 3(q, 1)
V(3(p, 1), A(n, 1))
FY(p, 3(n, 1))

V(p, 3(q, 1)
V(3(p, 1), V(n,1)
FY(p, V(n,r))

+(=P+R)+ (—Q+R*)
F—P+(—Q+R*)
—(-P+(-Q+R")
+P — (-Q+R*)
|

+(-P+R)+ (+Q+R*)
F+Q+(—P+R¥)

1
i ~(+Q+ (=P +R%))
QiR T
—P +R'
1
+Q I
y +Q
_R* | )
P‘ R? e
P+
\ Q! *)1
2 —(=P+R¥*)
—Q i R* L 4pRY
|
—p! +R! +P!
L
1
ot xl —R*
Q +R N
1 1

P+ (+Q+R)
—(+P+R*) + (+N +R)
=P+ (+N+R)
—(=P+ (+N +R))
+P—(+N+R)
|
+pP!
|
—(+N+R)"
N
// ~
-p! +Q +R!
1 |

—P+(+Q+R)
—(+P +R*) + (-N+R)
F—P+(-N+R)
—(~P+(=N+R))
+P— (-N+R)

+P?
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4. Conclusiones

En este trabajo hemos ofrecido una traduccidn de la l6gica natural de Moss a la logica de
términos de Sommers usando un método de arboles. El resultado de esta traducciéon muestra
que la légica de términos de Sommers es un sistema alternativo a la logica natural de Moss
que se encuentra mds alld de la frontera de los sistemas tipo Peano-Frege, Church-Turing y
Aristételes pero que mantiene el poder expresivo de los sistemas que habitan dentro de los
limites de tales fronteras:

i) En efecto, TFL se encuentra mds alld de la frontera de los sistemas tipo Peano-Frege

por su naturaleza sintdctica terministica; y en la medida en que un subconjunto de
TFL se equipara con la jerarquia de Moss, por lo menos un fragmento de TFL se
encuentra mds de alld de la frontera Church-Turing y de la frontera de los sistemas
aristotélicos.

ii) Sin embargo, a pesar de lo anterior, la traduccién que hemos presentado muestra que

TFL mantiene el poder expresivo de los sistemas equivalentes en la jerarquia de Moss.
Mais todavia, TFL permite inferencias bdsicas que no son expresables prima facie en
la jerarquia de Moss, como el cambio asociativo o la simplificacién poliddica.

Este par de consideraciones nos permite ubicar el lugar del fragmento equivalente de
TFL en el mapa de Moss (Figura 3):

Figura 3. El lugar de TFL en la jerarquia de Moss (adaptado de Moss (2015)

FOL

FO2 + trans

RC(tr, opp)
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Este resultado, asi, sugiere que las l6gicas de términos, lejos de estar condenadas a ser
un episodio superado de la historia de la 16gica, pueden ser usadas adecuadamente en la
implementacién de un proyecto de l6gica natural, lo cual es interesante para la filosoffa de la
16gica y para la teoria de la computacién. Para la filosofia de la l6gica, porque promueve la
revision de las 16gicas de términos (cfr. Veatch, 1970; Sommers, 1982; Englebretsen, 1996;
Correia, 2017; Simons, 2020) como herramientas que pueden ser mds interesantes y pode-
rosas de lo que originalmente habriamos creido (cfr. Carnap, 1930; Russell, 1937; Geach,
1962; Geach, 1980); y para la teoria de la computacion, porque no sélo nos permite reducir
el nimero de reglas de la jerarquia de Moss, sino que, junto con la técnica de arboles, puede
ser util para la programacion légica (cfr. Mozes, 1989; Castro-Manzano y Lozano-Cobos,
2018; Castro-Manzano, 2021).

Por 1tltimo, nos gustarfa afiadir que en investigaciones futuras debemos reconsiderar
dos tipos de estudios: comparativos y extensivos. Para los primeros seria necesario llevar a
cabo una comparacién mas detallada con los sistemas de demostracion algebraica (Carnielli,
2005; Carnielli y Agudelo, 2011), ya que estos sistemas nos permiten reconstruir el analisis
booleano de la silogistica empleando polinomios ademds de que pueden extenderse para
modelar otros sistemas 16gicos. Para los segundos seria necesario extender el modelo de
traduccion a inferencias en lenguaje natural pero con operadores modales (cfr. Englebret-
sen, 1998, Malink, 2006), numéricos (cfr. Murphree, 1998) o probabilistas (cfr. Thompson,
1986), ademds de modelos diagramaticos (cfr. Englebretsen, 1991), y disefios experimentales
en psicologia (cfr. Keil, 2005; Khemlani y Johnson-Laird, 2012) e inteligencia artificial (cfr.
Mozes, 1989).
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Apéndice A. Silogistica

La silogistica asertdrica es una légica de términos que tiene sus origenes en Primeros
analiticos y que estudia la relacién de inferencia entre enunciados categdricos. Un enunciado
categorico es un enunciado compuesto por dos términos, una cantidad y una cualidad. El
sujeto y el predicado del enunciado se llaman términos: el término-esquema S denota el
término sujeto y el término-esquema P denota el predicado. La cantidad puede ser universal
(Todo) o particular (Algiin) y la cualidad puede ser afirmativa (es) o negativa (no es). Estos
enunciados se suelen representar mediante una etiqueta: “a” para los enunciados universales
afirmativos (i.e. SaP); “e” para los universales negativos (i.e. SeP); “i” para los particulares
afirmativos (i.e. SiP); y “o” para los particulares negativos (i.. SoP). El uso de estas eti-
quetas nos permite identificar una secuencia de tres enunciados que se conoce como modo:
un modo es una secuencia de tres enunciados categdricos ordenados de tal manera que
los primeros dos enunciados son premisas y el dltimo enunciados es una conclusién. Un
silogismo categorico, entonces, es un modo con tres términos uno de los cuales ocurre en
ambas premisas pero no en la conclusion. Este término especial, usualmente denotado con
el término-esquema M, funciona como un enlace entre los términos restantes y es conocido
como término medio. De acuerdo a la posicién del término medio se pueden definir los
cuatro arreglos o figuras que codifican los silogismos vélidos (Cuadro A1).0

Tabla A1. Modos vélidos de la silogistica

Figura 1 2 3 4
aaa eae iai aee
eae aee  aii iai
aii  eio o0ao eio

Modo

eio0 aoo eio

6 Sin pérdida de generalidad, omitimos los silogismos que requieren carga existencial.
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Apéndice B. Reglas de TFL

* Reglas de inferencia inmediata.

o

Premisa (P): Cualquier premisa o tautologia puede introducirse en una prueba
(se excluyen las tautologias que repitan el correspondiente condicional de la
inferencia. El correspondiente condicional de una inferencia es un condicional
cuyo antecedente es la conjuncién de las premisas y cuyo consecuente es la con-
clusion).

Doble negacion (DN): Pares de signos menos unarios pueden ser afiadidos o
borrados de una férmula (i.e., --X=X).

Negacion externa (NE): Un signo menos unario puede ser distribuido dentro o
fuera de cualquier frase (i.e., -(X+Y)=£X+Y).

Negacion interna (NI): Un signo negativo puede ser distribuido dentro o fuera de
cualquier término-predicado (i.e., +X-(xY)==X+(zY)).

Conmutacién (Conm): El signo positivo binario es simétrico (i.e., +X+Y=+Y+X).
Asociacion (Asoc): El signo positivo binario es asociativo (i.e.,
+X+(+Y+2)=+(+X+Y)+Z).

Contraposicion (Contra): Los términos sujeto y predicado de una afirmacién uni-
versal pueden ser negados y pueden intercambiar lugares (i.e., -X+Y=-(-Y)+(-X)).
Distribucién de predicado (DP): Un término sujeto universal puede ser distribuido
dentro o fuera de un predicado conjuntivo (i.e., -X+(+Y+Z)=+(-X+Y)+(-X+2)) y
un término sujeto particular puede ser distribuido dentro o fuera de un predicado
disyuntivo (i.e., +X+ (-(-Y)-(-Z))=--(+X+Y)--(+X+Z)).

Iteracion (If): La conjuncién de un término consigo mismo es equivalente a dicho
término (i.e., +X+X=X).

* Reglas de inferencia mediata

o

Dictum de omni (DON): Si un término M ocurre universalmente cuantificado en
una férmula y, o bien M ocurre no universalmente cuantificado o su contrario
16gico ocurre universalmente cuantificado en otra férmula, entonces se puede
deducir una nueva férmula que es exactamente como la segunda excepto que
M ha sido reemplazada por lo menos una vez por la primera férmula menos el
término M universalmente cuantificado.

Simplificacién (Simp): Cualquier conyunto puede ser deducido de una férmula
conjuntiva; de una férmula cuantificada particularmente con un término sujeto
conjuntivo, se puede deducir el término sujeto o un nuevo enunciado justo como
el original pero sin uno de los conyuntos del término sujeto (i.e., de +(+X+Y)+Z
se deduce cualquiera de las siguientes formulas: +X+Y, +X+Z, 0 +Y+Z), y de
una férmula cuantificada universalmente con un predicado conjuntivo se puede
deducir un nuevo enunciado como el original pero sin uno de los conyuntos del
término predicado (i.e., de -X+(+Y+Z) se deduce -X+Y o bien -X+Z).

Adicién (Ad): Cualesquiera dos férmulas previas en una secuencia pueden ser
unidas para obtener una nueva férmula, y de cualesquiera dos férmulas universa-
les afirmativas que compartan un término sujeto comun, una nueva férmula que
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puede ser deducida es una afirmativa universal que tiene el sujeto de las férmulas
anteriores y tiene la conjuncién de los términos predicados de las férmulas ante-
riores como el término predicado (i.e., de -X+Y y -X+Z se deduce -X+(+Y+Z)).
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