ENHANCING FOOD SAFETY IN MEAT AND MEAT PRODUCTS: THE COMBINED ANTIMICROBIAL AND ANTIOXIDANT EFFECTS OF MORINGA, GINGER, AND OLIVE AGAINST ESKAPE PATHOGENS
Resumen
La contaminación alimentaria continúa siendo un problema crítico de salud pública a nivel mundial, impactando significativamente tanto a la industria alimentaria como a los consumidores. Aunque se han utilizado aditivos sintéticos para enfrentar este desafío, sus efectos perjudiciales potenciales sobre la salud humana y la creciente preferencia de los consumidores por eliminar o sustituir estos compuestos por alternativas naturales, han llevado a un interés creciente entre los investigadores en identificar alternativas naturales y seguras que mejoren la seguridad alimentaria y la salud pública.
En este contexto, la moringa, el jengibre y el olivo han emergido como opciones prominentes debido a sus perfiles de seguridad naturales y su potencial como suplementos alimenticios. Estas plantas se destacan particularmente por sus propiedades antimicrobianas, antioxidantes y antiinflamatorias, especialmente contra los patógenos ESKAPE, grupo de seis especies bacterianas (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa y Enterobacter spp.) reconocidas como bacterias críticas por su alta resistencia a los antibióticos y su virulencia, representando una amenaza significativa en entornos hospitalarios, siendo los principales causantes de infecciones nosocomiales.
Además, estudios independientes han resaltado las propiedades anticancerígenas de estas plantas. Sin embargo, a pesar de las amplias actividades biológicas atribuidas a la moringa, el jengibre y el olivo, existe una brecha significativa en la literatura con respecto a sus efectos combinados en la seguridad alimentaria, especial- mente en lo que respecta a los productos cárnicos. Este estudio tiene como objetivo subrayar la importancia de estas tres plantas en la mejora de la seguridad alimentaria, con un enfoque particular en su aplicación potencial en la industria cárnica.
Descargas
-
Resumen67
-
pdf 45
-
Graphical abstract (.png) 8
Citas
Abd El-Hack, M. E., Alqhtani, A. H., Swelum, A., El-Saadony, M. T., Salem, H. M., Babalghith, A. O., El-Tarabily, K. A., & El-Tarabily, K. A. (2022). Pharmacological, nutritional and antimicrobial uses of Moringa oleifera Lam. leaves in poultry nutrition: An updated knowledge. Poultry Science, 101(9), 102031.
Abdallah, H. M., Mohamed, M. E., El-Halawany, A. M., & El-Bassossy, H. M. (2023). Moringa oleifera extracts as natural preservatives in meat products: Impact on shelf-life extension and sensory quality. Food Chemistry, 405(Part A), 134823.
Abdel-Naeem, H. H., Talaat, M. M., Imre, K., Morar, A., Herman, V., & El-Nawawi, F. A. (2022). Structural changes, electrophoretic pattern, and quality attributes of camel meat treated with fresh ginger extract and papain powder. Foods, 11(13), 1876.
Ahmed, M., Marrez, D. A., Abdelmoeen, N. M., Mahmoud, E. A., Abdel-Shakur Ali, M., Decsi, K., & Tóth, Z. (2023). Proximate analysis of Moringa oleifera leaves and the antimicrobial activities of successive leaf ethanolic and aqueous extracts compared with green chemically synthesized Ag-NPs and crude aqueous extract against some pathogens. International Journal of Molecular Sciences, 24(4), 3529.
Akullo JO, Kiage B, Nakimbugwe D, Kinyuru J. Effect of aqueous and organic solvent extraction on in-vitro antimicrobial activity of two varieties of fresh ginger (Zingiber officinale) and garlic (Allium sativum). Heliyon. 2022 Aug 28;8(9):e10457.
Ballester, P., Cerdá, B., Arcusa, R., Marhuenda, J., Yamedjeu, K., & Zafrilla, P. (2022). Effect of ginger on inflammatory diseases. Molecules, 27(21), 7223.
Bisignano, G., Tomaino, A., Cascio, R. L., Crisafi, G., Uccella, N., & Saija, A. (1999). On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. Journal of Pharmacy and Pharmacology, 51(8), 971–974.
Borjan, D., Leitgeb, M., Knez, Ž., & Hrnčič, M. K. (2020). Microbiological and antioxidant activity of phenolic compounds in olive leaf extract. Molecules, 25(24), 5946.
Bouchami, O., Fraqueza, M. J., Faria, N. A., Alves, V., Lawal, O. U., de Lencastre, H., & Miragaia, M. (2020). Evidence for the dissemination to humans of methicillin-resistant Staphylococcus aureus ST398 through the pork production chain: A study in a Portuguese slaughterhouse. Microorganisms, 8(12), 1892.
Caparra, P., Chies, L., Scerra, M., Foti, F., Bognanno, M., Cilione, C., & Cifuni, G. F. (2023). Effect of dietary ensiled olive cake supplementation on performance and meat quality of Apulo-Calabrese pigs. Animals, 13(12), 2022.
Çobur, H., Bülbül, A. S., & Cömertpay, S. (2021). Investigation of anti-cancer and antioxidant properties of zingerone. Biyoloji Bilimleri Araştırma Dergisi, 14(1), 70–75.
Collineau, L., Boerlin, P., Carson, C. A., Chapman, B., Fazil, A., Hetman, B., & Smith, B. A. (2019). Integrating whole-genome sequencing data into quantitative risk assessment of foodborne antimicrobial resistance: A review of opportunities and challenges. Frontiers in Microbiology, 10, 1107.
Conceição, S., Queiroga, M. C., & Laranjo, M. (2023). Antimicrobial resistance in bacteria from meat and meat products: A one health perspective. Microorganisms, 11(10), 2581.
Cong, W., Wang, X., Zheng, F., Huang, S., & Liu, Y. (2020). Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus spp. (VRE) in food-producing animals and meat: A review of the zoonotic potential.Foodborne Pathogens and Disease, 17(5), 287-298.
De Lima, R. M. T., Dos Reis, A. C., de Menezes, A. A. P. M., Santos, J. V. D. O., Filho, J. W. G. D. O., Ferreira, J. R. D. O., & Melo‐Cavalcante, A. A. D. C. (2018). Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]‐gingerol in cancer: A comprehensive review. Phytotherapy Research, 32(10), 1885–1907.
Djordjevic, S. P., Stokes, H. W., & Roy Chowdhury, P. (2013). Mobile elements, zoonotic pathogens and commensal bacteria: conduits for the delivery of resistance genes into humans, production animals and soil microbiota. Frontiers in Microbiology, 4, 86.
Denissen, J., Reyneke, B., Waso-Reyneke, M., Havenga, B., Barnard, T., Khan, S., & Khan, W. (2022). Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. International Journal of Hygiene and Environmental Health, 244, 114006.
EFSA (European Food Safety Authority). (2022). The European Union One Health 2022 zoonoses report. EFSA Journal, 21(12), e08491.
El‐Fakharany, E. M., Elsharkawy, W. B., El‐ Maradny, Y. A., & El‐Gendi, H. (2024). Moringa oleifera seed methanol extract with consolidated antimicrobial, antioxidant, anti‐inflammatory, and anticancer activities. Journal of Food Science, 89(3), 1234–1245.
El, S. N., & Karakaya, S. (2009). Olive tree (Olea europaea) leaves: Potential beneficial effects on human health. Nutrition Reviews, 67(11), 632–638.
Elazab, M. A., Khalifah, A. M., Elokil, A. A., Elkomy, A. E., Rabie, M. M., Mansour, A. T., & Morshedy, S. A. (2022). Effect of dietary rosemary and ginger essential oils on the growth performance, feed utilization, meat nutritive value, blood biochemicals, and redox status of growing NZW rabbits. Animals, 12(3), 375.
Elnahas, R. A., Elwakil, B. H., Elshewemi, S. S., & Olama, Z. A. (2021). Egyptian Olea europaea leaves bioactive extract: Antibacterial and wound healing activity in normal and diabetic rats. Journal of Traditional and Complementary Medicine, 11(5), 427–434.
Escrich, E., Moral, R., Grau, L., Costa, I., & Solanas, M. (2007). Molecular mechanisms of the effects of olive oil and other dietary lipids on cancer. Molecular Nutrition & Food Research, 51(10), 1279–1292.
Elshebrawy, H. A., Mahros, M. A., Khalifa, E., & Samir, A. (2025). Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in retail chicken meat and buffalo milk: Implications for food safety. International Journal of Food Microbiology, 378, 109815.
Fabiani, R. (2016). Anti-cancer properties of olive oil secoiridoid phenols: A systematic review of in vivo studies. Food & Function, 7(10), 4145–4159.
Felfoul, I., Borchani, M., Samet-Bali, O., Attia, H., & Ayadi, M. A. (2017). Effect of ginger (Zingiber officinalis) addition on fermented bovine milk: Rheological properties, sensory attributes and antioxidant potential. Journal of New Sciences, 44, 2400–2409.
Forsberg, K. J., Reyes, A., Wang, B., Selleck, E. M., Sommer, M. O. A., & Dantas, G. (2012). The shared antibiotic resistome of soil bacteria and human pathogens. Science, 337(6098), 1107-1111.
Gervasi, F., & Pojero, F. (2024). Use of oleuropein and hydroxytyrosol for cancer prevention and treatment: Considerations about how bioavailability and metabolism impact their adoption in clinical routine. Biomedicines, 12(3), 502.
Gheorghita, R., Filip, R., Lupaescu, A. V., Iavorschi, M., Anchidin-Norocel, L., & Gutt, G. (2023). Innovative materials with possible applications in the wound dressings field: Alginate-based films with Moringa oleifera extract. Gels, 9(7), 560.
Gorzynik-Debicka, M., Przychodzen, P., Cappello, F., Kuban-Jankowska, A., Marino Gammazza, A., Knap, N., & Gorska-Ponikowska, M. (2018). Potential health benefits of olive oil and plant polyphenols. International Journal of Molecular Sciences, 19(3), 686.
Grubić Kezele, T., & Ćurko-Cofek, B. (2022). Neuroprotective panel of olive polyphenols: Mechanisms of action, anti-demyelination, and anti-stroke properties. Nutrients, 14(21), 4533.
Hassan, A. H., Youssef, I. M., Abdel-Atty, N. S., & Abdel-Daim, A. S. (2024). Effect of thyme, ginger, and their nano-particles on growth performance, carcass characteristics, meat quality and intestinal bacteriology of broiler chickens. BMC Veterinary Research, 20(1), 1–13.
Hernández-Cortez, C., Palma-Martínez, I., Gonzalez-Avila, L. U., Guerrero-Mandujano, A., Solís, R. C., & Castro-Escarpulli, G. (2017). Food poisoning caused by bacteria (food toxins). In Poisoning: From specific toxic agents to novel rapid and simplified techniques for analysis (p. 33).
Ibrahim, M. E. E. D., Alqurashi, R. M., & Alfaraj, F. Y. (2022). Antioxidant activity of Moringa oleifera and olive Olea europea L. leaf powders and extracts on quality and oxidation stability of chicken burgers. Antioxidants, 11(3), 496.
Ivane, N. M. A., Elysé, F. K. R., Haruna, S. A., Pride, N., Richard, E., Foncha, A. C., & Dandago, M. A. (2022). The anti-oxidative potential of ginger extract and its constituent on meat protein isolate under induced Fenton oxidation. Journal of Proteomics, 269, 104723.
Jahan, S., Shahjahan, M., Rasna, S. S., Aktar, M., Sultana, S., Ahmed, S. M., & Nahar, S. (2022). Antibacterial effect of Moringa (Moringa oleifera) leaf ethanolic extract against Staphylococcus aureus and Escherichia coli. Mymensingh Medical Journal: MMJ, 31(4), 976–982.
Karim, O., Kayode, R., Oyeyinka, S., & Oyeyinka, A. (2015). Muz (Musa paradisca) unu ve Moringa (Moringa oleifera) yaprak tozundan hazırlanan sert hamur “amala”nın fizikokimyasal özellikleri. Hrana u zdravlju i bolesti: Znanstveno-stručni časopis za nutricionizam i dijeteteku, 4(1), 48–58.
Karpińska-Tymoszczyk, M., Draszanowska, A., & Danowska-Oziewicz, M. (2022). The effect of ginger rhizome addition and storage time on the quality of pork meatloaf. Foods, 11(22), 3563.
Kiyama, R. (2020). Nutritional implications of ginger: Chemistry, biological activities and signaling pathways. The Journal of Nutritional Biochemistry, 86, 108486.
Klimek-Szczykutowicz, M., Gaweł-Bęben, K., Rutka, A., Blicharska, E., Tatarczak-Michalewska, M., Kulik-Siarek, K., & Szopa, (2024). Moringa oleifera (drumstick tree) nutraceutical, cosmetological and medicinal importance: A review. Frontiers in Pharmacology, 15, 1288382.
Li, H., Sun, X., Liao, X., & Gänzle, M. (2020). Control of pathogenic and spoilage bacteria in meat and meat products by high pressure: Challenges and future perspectives. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3476–3500.
Lopez de las Hazas, M. C., Piñol, C., Macià, A., & Motilva, M. J. (2017). Hydroxytyrosol and the colonic metabolites derived from virgin olive oil intake induce cell cycle arrest and apoptosis in colon cancer cells. Journal of Agricultural and Food Chemistry, 65(31), 6467–6476.
Madane, P., Das, A. K., Pateiro, M., Nanda, P. K., Bandyopadhyay, S., Jagtap, P., & Lorenzo, J. M. (2019). Drumstick (Moringa oleifera) flower as an antioxidant dietary fibre in chicken meat nuggets. Foods, 8(8), 307.
Mahfuz, S., & Piao, X. S. (2019). Application of Moringa (Moringa oleifera) as natural feed supplement in poultry diets. Animals, 9(7), 431.
Mancini, S., Paci, G., Fratini, F., Torracca, B., Nuvoloni, R., Dal Bosco, A., & Preziuso, G. (2017). Improving pork burgers quality using Zingiber officinale Roscoe powder (ginger). Meat Science, 129, 161–168.
Mansour, M., Mohamed, M. F., Elhalwagi, A., El-Itriby, H. A., Shawki, H. H., & Abdelhamid, I. A. (2019). Moringa peregrina leaves extracts induce apoptosis and cell cycle arrest of hepatocellular carcinoma. BioMed Research International, 2019(1), 2698570.
Mao, Q. Q., Xu, X. Y., Cao, S. Y., Gan, R. Y., Corke, H., Beta, T., & Li, H. B. (2019). Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods, 8(6), 185.
Marcelino, G., Hiane, P. A., Freitas, K. D. C., Santana, L. F., Pott, A., Donadon, J. R., & Guimarães, R. D. C. A. (2019). Effects of olive oil and its minor components on cardiovascular diseases, inflammation, and gut microbiota. Nutrients, 11(8), 1826.
Melguizo-Rodríguez, L., González-Acedo, A., Illescas-Montes, R., García-Recio, E., Ramos-Torrecillas, J., Costela-Ruiz, V. J., & García-Martínez, O. (2022). Biological effects of the olive tree and its derivatives on the skin. Food & Function, 13(22), 11410–11424.
Mijatovic, S. A., Timotijevic, G. S., Miljkovic, D. M., Radovic, J. M., Maksimovic‐Ivanic, D. D., Dekanski, D. P., & Stosic‐Grujicic, S. D. (2011). Multiple antimelanoma potential of dry olive leaf extract. International Journal of Cancer, 128(8), 1955–1965.
Milla, P. G., Peñalver, R., & Nieto, G. (2021). Health benefits of uses and applications of Moringa oleifera in bakery products. Plants, 10(2), 318.
Miller, W. R., & Arias, C. A. (2024). ESKAPE pathogens: Antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nature Reviews Microbiology, 1–19.
Mohammed, G. M., & Hawar, S. N. (2022). Green biosynthesis of silver nanoparticles from Moringa oleifera leaves and its antimicrobial and cytotoxicity activities. International Journal of Biomaterials, 2022(1), 4136641.
Moon, Y. S., Lee, H. S., & Lee, S. E. (2018). Inhibitory effects of three monoterpenes from ginger essential oil on growth and aflatoxin production of Aspergillus flavus and their gene regulation in aflatoxin biosynthesis. Applied Biological Chemistry, 61, 243–250.
Muhialdin, B. J., Kadum, H., Fathallah, S., & Hussin, A. S. M. (2020). Metabolomics profiling and antibacterial activity of fermented ginger paste extends the shelf life of chicken meat. LWT, Food Science and Technology, 132, 109897.
Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S., & Pardesi, K. R. (2019). Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Frontiers in Microbiology, 10, 539.
Munekata, P. E. S., Rocchetti, G., Pateiro, M., Lucini, L., Domínguez, R., & Lorenzo, J. M. (2020). Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: An overview. Current Opinion in Food Science, 31, 81–87.
Muthukumar, M., Naveena, B. M., Vaithiyanathan, S., Sen, A. R., & Sureshkumar, K. (2023). Moringa oleifera leaf powder as a natural antioxidant in pork meatballs: Impact on lipid oxidation and quality during storage. Meat Science, *195*, 109023.
Naqvi, Z. B., Campbell, M. A., Latif, S., Thomson, P. C., Astruc, T., Friend, M. A., & Warner, R. D. (2022). The effect of extended refrigerated storage on the physicochemical, structural, and microbial quality of sous vide cooked biceps femoris treated with ginger powder (zingibain). Meat Science, 186, 108729.
Ndhlala, A. R., Mulaudzi, R., Ncube, B., Abdelgadir, H. A., Du Plooy, C. P., & Van Staden, J. (2014). Antioxidant, antimicrobial and phytochemical variations in thirteen Moringa oleifera Lam. cultivars. Molecules, 19(7), 10480–10494.
Nediani, C., Ruzzolini, J., Romani, A., & Calorini, L. (2019). Oleuropein, a bioactive compound from Olea europaea L., as a potential preventive and therapeutic agent in non-communicable diseases. Antioxidants, 8(12), 578.
Owen, R. W., Giacosa, A., Hull, W. E., Haubner, R., Spiegelhalder, B., & Bartsch, H. (2000). The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. European Journal of Cancer, 36(10), 1235–1247.
Peñalver, R., Martínez‐Zamora, L., Lorenzo, J. M., Ros, G., & Nieto Martínez, G. (2024). Effect of hydroxytyrosol, Moringa, and spirulina on the physicochemical properties and nutritional characteristics of gluten‐free brownies. Food Science & Nutrition, 12(1), 385–398.
Puente, H., García-Meniño, I., Fernández, J., & Mora, A. (2025). Detection of high-priority resistance genes (*blaOXA-58*, *mcr-4.3*, tet(X3)) in Acinetobacter spp. from retail meat. Antimicrobial Agents and Chemotherapy, 69(3), e01542-24.
Ramatla, T., Ngoma, L., Adetunji, M., & Mwanza, M. (2017). Evaluation of antibiotic residues in raw meat using different analytical methods. Antibiotics, 6(4), 34.
Rice, L. B. (2008). Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. The Journal of Infectious Diseases, 197(8), 1079–1081.
Rigacci, S., & Stefani, M. (2016). Nutraceutical properties of olive oil polyphenols. An itinerary from cultured cells through animal models to humans. International Journal of Molecular Sciences, 17(6), 843.
Rode, S. B., Dadmal, A., & Salankar, H. V. (2022). Nature’s gold (Moringa oleifera): Miracle properties. Cureus, 14, e26640.
Romero-Márquez, J. M., Forbes-Hernández, T. Y., Navarro-Hortal, M. D., Quirantes-Piné, R., Grosso, G., Giampieri, F., & Quiles, J. L. (2023). Molecular mechanisms of the protective effects of olive leaf polyphenols against Alzheimer’s disease. International Journal of Molecular Sciences, 24(5), 4353.
Safwat, A. M., Sarmiento-Franco, L., SantosRicalde, R., & Nieves, D. (2014). Effect of dietary inclusion of Leucaena leucocephala or Moringa oleifera leaf meal on performance of growing rabbits. Tropical Animal Health and Production, 46, 1193–1198.
Saleh, E., Morshdy, A. E., El-Manakhly, E., AlRashed, S., F. Hetta, H., Jeandet, P., & Ali, E. (2020). Effects of olive leaf extracts as natural preservative on retailed poultry meat quality. Foods, 9(8), 1017.
Sánchez-Gutiérrez, M., Bascón-Villegas, I., Rodríguez, A., Pérez-Rodríguez, F., Fernández-Prior, Á., Rosal, A., & Carrasco, E. (2021). Valorisation of Olea europaea L. olive leaves through the evaluation of their extracts: Antioxidant and antimicrobial activity. Foods, 10(5), 966.
Santajit, S., & Indrawattana, N. (2016). Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Research International, 2016(1), 2475067.
Selani, M. M., Herrero, A. M., & Ruiz-Capillas, C. (2022). Plant antioxidants in dry fermented meat products with a healthier lipid profile. Foods, 11, 3558.
Seleshe, S., & Kang, S. N. (2019). In vitro antimicrobial activity of different solvent extracts from Moringa stenopetala leaves. Preventive Nutrition and Food Science, 24(1), 70.
Semwal, R. B., Semwal, D. K., Combrinck, S., & Viljoen, A. M. (2015). Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry, 117, 554–568.
Sharma, P., Wichaphon, J., & Klangpetch, W. (2020). Antimicrobial and antioxidant activities of defatted Moringa oleifera seed meal extract obtained by ultrasound-assisted extraction and application as a natural antimicrobial coating for raw chicken sausages. International Journal of Food Microbiology, 332, 108770.
Shaukat, M. N., Nazir, A., & Fallico, B. (2023). Ginger bioactives: A comprehensive review of health benefits and potential food applications. Antioxidants, 12(11), 2015.
Skodra, C., Titeli, V. S., Michailidis, M., Bazakos, C., Ganopoulos, I., Molassiotis, A., & Tanou, G. (2021). Olive fruit development and ripening: Break on through to the “-omics” side. International Journal of Molecular Sciences, 22(11), 5806.
Soni, M. G., Burdock, G. A., Christian, M. S., Bitler, C. M., & Crea, R. (2006). Safety assessment of aqueous olive pulp extract as an antioxidant or antimicrobial agent in foods. Food and Chemical Toxicology, 44(7), 903–915.
Toldrá, F., Mora, L., & Reig, M. (2016). New insights into meat by-product valorization. Meat Science, 120, 54–59.
Trigo, C., Castelló, M. L., & Ortolá, M. D. (2023). Potentiality of Moringa oleifera as a nutritive ingredient in different food matrices. Plant Foods for Human Nutrition, 78(1), 25–37.
Ueno, N., Hasebe, T., Kaneko, A., Yamamoto, M., Fujiya, M., Kohgo, Y., & Musch, M. W. (2014). TU-100 (daikenchuto) and ginger ameliorate anti-CD3 antibody induced T cell-mediated murine enteritis: Microbe-independent effects involving Akt and NF-κB suppression. PloS One, 9(5), e97456.
Utama-Ang, N., Sida, S., Wanachantararak, P., & Kawee-Ai, A. (2021). Development of edible Thai rice film fortified with ginger extract using microwave-assisted extraction for oral antimicrobial properties. Scientific Reports, 11(1), 14870.
Vasconcelos, N. G., Croda, J., & Simionatto, S. (2018). Antibacterial mechanisms of cinnamon and its constituents: A review. Microbial Pathogenesis, 120, 198–203.
Velázquez, L., Quiñones, J., Díaz, R., Pateiro, M., Lorenzo, J. M., & Sepúlveda, N. (2021). Natural antioxidants from endemic leaves in the elaboration of processed meat products: Current status. Antioxidants, 10(9), 1396.
Wang, S., Payne, G. F., & Bentley, W. E. (2020). Quorum sensing communication: molecularly connecting cells, their neighbors, and even devices. Annual review of chemical and biomolecular engineering, 11(1), 447-468.
Wen, C., Liu, Y., Ye, Y., Tao, Z., Cheng, Z., Wang, T., & Zhou, Y. (2020). Effects of gingerols-rich extract of ginger on growth performance, serum metabolites, meat quality and antioxidant activity of heat-stressed broilers. Journal of Thermal Biology, 89, 102544.
World Health Organization. (2015). WHO estimates of the global burden of foodborne diseases: Foodborne disease burden epidemiology reference group 2007-2015. World Health Organization.
Xu, Z., Deng, Y., Zhao, X., Sun, X., Yu, J., Wang, R., Wang, Q., & Shi, X. (2021). Editorial: Emerging frontiers in the formation of viable but non-culturable microorganisms and biofilms during food processing. Frontiers in Microbiology, 12, 726348.
Zhang, J., Wang, Y., Pan, D. D., Cao, J. X., Shao, X. F., Chen, Y. J., & Ou, C. R. (2016a). Effect of black pepper essential oil on the quality of fresh pork during storage. Meat Science, 117, 130–136.
Zhang, M., Viennois, E., Prasad, M., Zhang, Y., Wang, L., Zhang, Z., & Merlin, D. (2016b). Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials, 101, 321–340.
Zhang, B., Liu, Y., Peng, H., Lin, Y., & Cai, K. (2023). Effects of ginger essential oil on physicochemical and structural properties of agar‐sodium alginate bilayer film and its application to beef refrigeration. Meat Science, 198, 109051.
Zhou, G. H., Xu, X. L., & Liu, Y. (2010). Preservation technologies for fresh meat -A review. Meat Science, 86(1), 119–128.
Zimmermann-Klemd, A. M., Reinhardt, J. K., Winker, M., & Gründemann, C. (2022). Phytotherapy in integrative oncology -An update of promising treatment options. Molecules, 27(10), 3209.
Derechos de autor 2025 Servicio de Publicaciones, Universidad de Murcia (España)

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Reconocimiento-NoComercial-SinObraDerivada 3.0 España (CC BY-NC-ND 3.0 ES). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.


