EFECTO DE LAS SECRECIONES DE ORGANOIDES DE ENDOMETRIO HUMANO SOBRE EL CULTIVO IN VITRO DE EMBRIONES BOVINOS
Resumen
Durante los últimos 50 años, la fertilidad de las vacas lecheras de alta producción ha disminuido debido a la intensidad de la selección genética. Para superar este obstáculo, se ha recurrido a las técnicas de reproducción asistida. Sin embargo, la producción de embriones in vitro es un proceso relativamente ineficiente, con tasas máximas de blastocistos obtenidos de alrededor del 35%. Para solventar este problema, se planteó la hipótesis de añadir al medio de cultivo secreciones de organoides de endometrio, así, los embriones producidos in vitro estarían expuestos a un ambiente más fisiológico y el rendimiento de la técnica aumentaría. Para ello, se llevó a cabo la recolección de ovocitos bovinos procedentes de un matadero local, y se procedió a su maduración in vitro, fecundación in vitro y cultivo embrionario in vitro. El medio de cultivo embrionario se suplementó al 1% (v/v) con i) secreciones de organoides de endometrio humano (ya que no existe disponibilidad de secreciones bovinas), ii) medio de cultivo Boretto, y ii) gotas de matrigel con medio de cultivo Boretto, como controles de procedimiento. Además, se incluyó un grupo control sin ningún suplemento. Se evaluó el desarrollo embrionario a los días 2, 7 y 8 de cultivo. El porcentaje de blastocistos a día 7 y a día 8 post inseminación fue significativamente mayor (P<0.05) cuando se añadió el medio de cultivo Boretto. Además, este tratamiento incrementó la cinética de desarrollo de los embriones a día 7 post inseminación, y la calidad de los blastocistos evaluada por el número total de células, con un 85.8% más que el control. Aunque las secreciones de endometrio humano no han dado el resultado esperado, sería necesario comprobar si las secreciones de organoides específicas de endometrio bovino, a distintas concentraciones, podrían incrementar el rendimiento de la producción in vitro de embriones bovinos.
Descargas
Citas
Aguila, L., Treulen, F., Therrien, J., Felmer, R., Valdivia, M., & Smith, L. C. (2020). Oocyte Selection for In vitro Embryo Production in Bovine Species: Noninvasive Approaches for New Challenges of Oocyte Competence. Animals: An Open Access Journal from MDPI, 10(12), 2196. https://doi.org/10.3390/ani10122196
Arias, M. E., Vargas, T., Gallardo, V., Aguila, L., & Felmer, R. (2022). Simple and Efficient Chemically Defined In Vitro Maturation and Embryo Culture System for Bovine Embryos. Animals: an open access journal from MDPI, 12(21), 3057. https://doi.org/10.3390/ani12213057
Avilés, M., Gutiérrez-Adán, A., & Coy, P. (2010). Oviductal secretions: will they be key factors for the future ARTs? Molecular human reproduction, 16(12), 896–906. https://doi.org/10.1093/molehr/gaq056
Bastos, G. M., Gonçalves, P. B., & Bordignon, V. (2008). Immunolocalization of the high-mobility group N2 protein and acetylated histone H3K14 in early developing parthenogenetic bovine embryos derived from oocytes of high and low developmental competence. Molecular reproduction and development, 75(2), 282–290. https://doi.org/10.1002/mrd.20798
Bazer, F. W., Spencer, T. E., Johnson, G. A., Burghardt, R. C., & Wu, G. (2009). Comparative aspects of implantation. Reproduction (Cambridge, England), 138(2), 195–209. https://doi.org/10.1530/REP-09-0158
Block, J., Hansen, P. J., Loureiro, B., & Bonilla, L. (2011). Improving post-transfer survival of bovine embryos produced in vitro: Actions of insulin-like growth factor-1, colony stimulating factor-2 and hyaluronan. Theriogenology, 76(9), 1602-1609. https://doi.org/10.1016/j.theriogenology.2011.07.025
Bó, G. A., & Mapletoft, R. J. (2013). Evaluation and classification of bovine embryos. Animal Reproduction (AR), 10(3), 344-348.
Brito, L. F., Bedere, N., Douhard, F., Oliveira, H. R., Arnal, M., Peñagaricano, F., Schinckel, A. P., Baes, C. F., & Miglior, F. (2021). Review: Genetic selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world. Animal: An International Journal of Animal Bioscience, 15 Suppl 1, 100292. https://doi.org/10.1016/j.animal.2021.100292
Britt, J. H., Cushman, R. A., Dechow, C. D., Dobson, H., Humblot, P., Hutjens, M. F., Jones, G. A., Mitloehner, F. M., Ruegg, P. L., Sheldon, I. M., & Stevenson, J. S. (2021). Review: Perspective on high-performing dairy cows and herds. Animal, 15, 100298. https://doi.org/10.1016/j.animal.2021.100298
Cajas, Y. N., Cañón-Beltrán, K., de la Blanca, M. G. M., Sánchez, J. M., Fernandez-Fuertes, B., González, E. M., & Rizos, D. (2021). Role of reproductive fluids and extracellular vesicles in embryo–maternal interaction during early pregnancy in cattle. Reproduction, fertility, and development, 34(2), 117–138. https://doi.org/10.1071/RD21275
Chumduri, C., & Turco, M. Y. (2021). Organoids of the female reproductive tract. Journal of molecular medicine (Berlin, Germany), 99(4), 531–553. https://doi.org/10.1007/s00109-020-02028-0
Coy, P., Romar, R., & Romero-Aguirregomezcorta, J. (2022). The embryo culture media in the era of epigenetics: is it time to go back to nature? Animal reproduction, 19(1), e20210132. https://doi.org/10.1590/1984-3143-AR2021-0132
Cutullic, E., Delaby, L., Gallard, Y., & Disenhaus, C. (2012). Towards a better understanding of the respective effects of milk yield and body condition dynamics on reproduction in Holstein dairy cows. Animal, 6(3), 476-487.
Dieleman, S. J., Hendriksen, P. J., Viuff, D., Thomsen, P. D., Hyttel, P., Knijn, H. M., Wrenzycki, C., Kruip, T. A., Niemann, H., Gadella, B. M., Bevers, M. M., & Vos, P. L. (2002). Effects of in vivo prematuration and in vivo final maturation on developmental capacity and quality of pre-implantation embryos. Theriogenology, 57(1), 5–20. https://doi.org/10.1016/s0093-691x(01)00655-0
Duranthon, V., Watson, A. J., & Lonergan, P. (2008). Preimplantation embryo programming: transcription, epigenetics, and culture environment. Reproduction (Cambridge, England), 135(2), 141–150. https://doi.org/10.1530/REP-07-0324
Ferré, L. B., Kjelland, M. E., Strøbech, L. B., Hyttel, P., Mermillod, P., & Ross, P. J. (2020). Review: Recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods. Animal, 14(5), 991-1004. https://doi.org/10.1017/S1751731119002775
Fitzgerald, H. C., Schust, D. J., & Spencer, T. E. (2021). In vitro models of the human endometrium: evolution and application for women's health. Biology of reproduction, 104(2), 282–293. https://doi.org/10.1093/biolre/ioaa183
Garcia, S. M., Marinho, L. S., Lunardelli, P. A., Seneda, M. M., & Meirelles, F. V. (2015). Developmental block and programmed cell death in Bos indicus embryos: effects of protein supplementation source and developmental kinetics. PloS one, 10(3), e0119463. https://doi.org/10.1371/journal.pone.0119463
Gómez, E., Correia-Álvarez, E., Caamaño, J. N., Díez, C., Carrocera, S., Peynot, N., Martín, D., Giraud-Delville, C., Duranthon, V., Sandra, O., & Muñoz, M. (2014). Hepatoma-derived growth factor: from the bovine uterus to the in vitro embryo culture. Reproduction (Cambridge, England), 148(4), 353–365. https://doi.org/10.1530/REP-14-0304
Gopichandran, N., & Leese, H. J. (2006). The effect of paracrine/autocrine interactions on the in vitro culture of bovine preimplantation embryos. Reproduction (Cambridge, England), 131(2), 269–277. https://doi.org/10.1530/rep.1.00677
Hamdi, M., Lopera-Vasquez, R., Maillo, V., Sanchez-Calabuig, M. J., Núnez, C., Gutierrez-Adan, A., & Rizos, D. (2018). Bovine oviductal and uterine fluid support in vitro embryo development. Reproduction, fertility, and development, 30(7), 935–945. https://doi.org/10.1071/RD17286
Hansen, P. J., & Block, J. (2004). Towards an embryocentric world: the current and potential uses of embryo technologies in dairy production. Reproduction, fertility, and development, 16(1-2), 1–14. https://doi.org/10.10371/RD03073
Hoshi, H. (2003). In vitro production of bovine embryos and their application for embryo transfer. Theriogenology, 59(2), 675-685. https://doi.org/10.1016/s0093-691x(02)01247-5
Itoh N. (2016). FGF10: A multifunctional mesenchymal-epithelial signaling growth factor in development, health, and disease. Cytokine & growth factor reviews, 28, 63–69. https://doi.org/10.1016/j.cytogfr.2015.10.001
Itze-Mayrhofer, C., & Brem, G. (2020). Quantitative proteomic strategies to study reproduction in farm animals: Female reproductive fluids. Journal of Proteomics, 225, 103884. https://doi.org/10.1016/j.jprot.2020.103884
Kepkova, K. V., Vodicka, P., Toralova, T., Lopatarova, M., Cech, S., Dolezel, R., Havlicek, V., Besenfelder, U., Kuzmany, A., Sirard, M.-A., Laurincik, J., & Kanka, J. (2011). Transcriptomic analysis of in vivo and in vitro produced bovine embryos revealed a developmental change in cullin 1 expression during maternal-to-embryonic transition. Theriogenology, 75(9), 1582-1595. https://doi.org/10.1016/j.theriogenology.2010.12.019
Kobayashi, A., & Behringer, R. R. (2003). Developmental genetics of the female reproductive tract in mammals. Nature reviews. Genetics, 4(12), 969–980. https://doi.org/10.1038/nrg1225
Li, Y., Donnelly, C. G., & Rivera, R. M. (2019). Overgrowth Syndrome. The Veterinary Clinics of North America. Food Animal Practice, 35(2), 265-276. https://doi.org/10.1016/j.cvfa.2019.02.007
Lonergan, P., & Fair, T. (2008). In vitro-produced bovine embryos—Dealing with the warts. Theriogenology, 69(1), 17-22. https://doi.org/10.1016/j.theriogenology.2007.09.007
Lonergan, P., & Fair, T. (2016). Maturation of Oocytes in vitro. Annual Review of Animal Biosciences, 4(1), 255-268. https://doi.org/10.1146/annurev-animal-022114-110822
Lonergan, P., Fair, T., Forde, N., & Rizos, D. (2016). Embryo development in dairy cattle. Theriogenology, 86(1), 270-277. https://doi.org/10.1016/j.theriogenology.2016.04.040
Lopera-Vasquez, R., Hamdi, M., Maillo, V., Lloreda, V., Coy, P., Gutierrez-Adan, A., Bermejo-Alvarez, P., & Rizos, D. (2017). Effect of bovine oviductal fluid on development and quality of bovine embryos produced in vitro. Reproduction, fertility, and development, 29(3), 621–629. https://doi.org/10.1071/RD15238
Lopes, J. S., Canha-Gouveia, A., París-Oller, E., & Coy, P. (2019). Supplementation of bovine follicular fluid during in vitro maturation increases oocyte cumulus expansion, blastocyst developmental kinetics, and blastocyst cell number. Theriogenology, 126, 222-229. https://doi.org/10.1016/j.theriogenology.2018.12.010
Massimiani, M., Lacconi, V., La Civita, F., Ticconi, C., Rago, R., & Campagnolo, L. (2019). Molecular Signaling Regulating Endometrium-Blastocyst Crosstalk. International journal of molecular sciences, 21(1), 23. https://doi.org/10.3390/ijms21010023
Mesalam, A., Lee, K. L., Khan, I., Chowdhury, M. M. R., Zhang, S., Song, S. H., Joo, M. D., Lee, J. H., Jin, J. I., & Kong, I. K. (2019). A combination of bovine serum albumin with insulin-transferrin-sodium selenite and/or epidermal growth factor as alternatives to fetal bovine serum in culture medium improves bovine embryo quality and trophoblast invasion by induction of matrix metalloproteinases. Reproduction, fertility, and development, 31(2), 333–346. https://doi.org/10.1071/RD18162
Ministerio de Agricultura, Pesca y Alimentación. (2023). Ganado bovino. Plataforma de conocimiento para el medio rural y pesquero. Observatorio de Tecnologías Probadas. Recuperado de https://www.mapa.gob.es/es/ministerio/servicios/informacion/plataforma-de-conocimiento-para-el-medio-rural-y-pesquero/observatorio-de-tecnologias-probadas/sistemas-prodnut-animal/ganado-bovino.aspx
Nagai T. (2001). The improvement of in vitro maturation systems for bovine and porcine oocytes. Theriogenology, 55(6), 1291–1301. https://doi.org/10.1016/s0093-691x(01)00483-6
Parrish, J. J., Susko-Parrish, J., Winer, M. A., & First, N. L. (1988). Capacitation of bovine sperm by heparin. Biology of Reproduction, 38(5), 1171-1180. https://doi.org/10.1095/biolreprod38.5.1171
Pryce, J. E., Royal, M. D., Garnsworthy, P. C., & Mao, I. L. (2004). Fertility in the high-producing dairy cow. Livestock Production Science, 86(1), 125-135. https://doi.org/10.1016/S0301-6226(03)00145-3
Rossi, G., Manfrin, A., & Lutolf, M. P. (2018). Progress and potential in organoid research. Nature reviews. Genetics, 19(11), 671–687. https://doi.org/10.1038/s41576-018-0051-9
Shiraga, M., Takahashi, S., Miyake, T., Takeuchi, S., & Fukamachi, H. (1997). Insulin-Like Growth Factor-I Stimulates Proliferation of Mouse Uterine Epithelial Cells in Primary Culture. Proceedings of the Society for Experimental Biology and Medicine, 215(4):412-417. https://doi:10.3181/00379727-215-44152
Sirard, M. A. (2018). 40 years of bovine IVF in the new genomic selection context. Reproduction (Cambridge, England), 156(1), R1–R7. https://doi.org/10.1530/REP-18-0008
Telfer, E. E., Sakaguchi, K., Clarkson, Y. L., McLaughlin, M., Telfer, E. E., Sakaguchi, K., Clarkson, Y. L., & McLaughlin, M. (2020). In vitro growth of immature bovine follicles and oocytes. Reproduction, Fertility and Development, 32(2), 1-6. https://doi.org/10.1071/RD19270
Van Langendonckt, A., Donnay, I., Schuurbiers, N., Auquier, P., Carolan, C., Massip, A., & Dessy, F. (1997). Effects of supplementation with fetal calf serum on development of bovine embryos in synthetic oviduct fluid medium. Journal of Reproduction and Fertility, 109(1), 87-93. https://doi.org/10.1530/jrf.0.1090087
van Soom, A., Ysebaert, M. T., & de Kruif, A. (1997). Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos. Molecular reproduction and development, 47(1), 47–56. https://doi.org/10.1002/(SICI)1098-2795(199705)47:1<47:AID-MRD7>3.0.CO;2-Q
Vh, D., S, W., & Aw, T.-R. (2016). Improvements to In vitro Culture Media for Use in Bovine IVF. Journal of Veterinary Science and Animal Husbandry, 4(2). https://doi.org/10.15744/2348-9790.4.205
Viana, J. (2022). 2021 Statistics of embryo production and transfer in domestic farm animals. Embryo Technology Newsletter, 40(4), 22-40.
Wang, Z., Song, Y., Sun, S., Zhao, C., Fu, S., Xia, C., & Bai, Y. (2022). Metabolite Comparison between Serum and Follicular Fluid of Dairy Cows with Inactive Ovaries Postpartum. Animals: an open access journal from MDPI, 12(3), 285.
Wells A. (1999). EGF receptor. The international journal of biochemistry & cell biology, 31(6), 637–643. https://doi.org/10.1016/s1357-2725(99)00015-1
Wrenzycki, C. (2018). Gene expression analysis and in vitro production procedures for bovine preimplantation embryos: Past highlights, present concepts and future prospects. Reproduction in Domestic Animals = Zuchthygiene, 53 Suppl 2, 14-19. https://doi.org/10.1111/rda.13260
Young, L. E., Sinclair, K. D., & Wilmut, I. (1998). Large offspring syndrome in cattle and sheep. Reviews of Reproduction, 3(3), 155-163. https://doi.org/10.1530/ror.0.0030155
Derechos de autor 2023 Servicio de Publicaciones, Universidad de Murcia (España)
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Reconocimiento-NoComercial-SinObraDerivada 3.0 España (CC BY-NC-ND 3.0 ES). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.