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Título: Un viaje alrededor de alfa y omega para estimar la fiabilidad de 
consistencia interna. 
Resumen: En este trabajo se presenta una guía conceptual y práctica para 
estimar la fiabilidad de consistencia interna de medidas obtenidas mediante 
suma o promedio de ítems con base en las aportaciones más recientes de la 
psicometría. El coeficiente de fiabilidad de consistencia interna se presenta 
como un subproducto del modelo de medida subyacente en las respuestas a 
los ítems y se propone su estimación mediante un procedimiento de análi-
sis de los ítems en tres fases, a saber, análisis descriptivo, comprobación de 
los modelos de medida pertinentes y cálculo del coeficiente de consistencia 
interna y su intervalo de confianza. Se proporcionan las siguientes fórmu-
las: (a) los coeficientes alfa de Cronbach y omega para medidas unidimen-
sionales con ítems cuantitativos (b) los coeficientes omega ordinal, alfa or-
dinal y de fiabilidad no lineal para ítems dicotómicos y ordinales, y (c) los 
coeficientes omega y omega jerárquico para medidas esencialmente unidi-
mensionales con efectos de método. El procedimiento se generaliza al aná-
lisis de medidas obtenidas por suma ponderada, de escalas multidimensio-
nales, de diseños complejos con datos multinivel y/o faltantes y también al 
desarrollo de escalas. Con fines ilustrativos se expone el análisis de cuatro 
ejemplos numéricos y se proporcionan los datos y la sintaxis en R. 
Palabras clave: Fiabilidad; consistencia interna; coeficiente alfa; coeficien-
te omega; medidas congenéricas; medidas tau-equivalentes; análisis factorial 
confirmatorio. 

 Abstract: Based on recent psychometric developments, this paper presents 
a conceptual and practical guide for estimating internal consistency reliabil-
ity of measures obtained as item sum or mean. The internal consistency re-
liability coefficient is presented as a by-product of the measurement model 
underlying the item responses. A three-step procedure is proposed for its 
estimation, including descriptive data analysis, test of relevant measure-
ment models, and computation of internal consistency coefficient and its 
confidence interval. Provided formulas include: (a) Cronbach’s alpha and 
omega coefficients for unidimensional measures with quantitative item re-
sponse scales, (b) coefficients ordinal omega, ordinal alpha and nonlinear 
reliability for unidimensional measures with dichotomic and ordinal items, 
(c) coefficients omega and omega hierarchical for essentially unidimension-
al scales presenting method effects. The procedure is generalized to 
weighted sum measures, multidimensional scales, complex designs with 
multilevel and/or missing data and to scale development. Four illustrative 
numerical examples are fully explained and the data and the R syntax are 
provided. 
Key words: Reliability, internal consistency, coefficient alpha, coefficient 
omega, congeneric measures, tau-equivalent measures, confirmatory factor 
analysis. 

 
There was a time when Cronbach's alpha coefficient (α, 
Cronbach, 1951) was widely accepted as a reliability indicator 
for a questionnaire designed to measure a single construct. It 
was the estimator of internal consistency reliability of the 
sum or average of responses to the items. Under the umbrel-
la of classical test theory (CTT, Lord & Novick, 1968), α was 
used for items with a quantitative response scale, as well as 
its equivalent expressions such as KR-20 for dichotomous 
items and the Spearman-Brown formula for standardized re-
sponses (e.g., Muñiz, 1992; Nunnally, 1978).  

It was irrelevant that the author who first published the 
coefficient formulation was not Cronbach (e.g., Revelle & 
Zinbarg, 2009), nor that Cronbach himself warned against its 
excessive use (Cronbach & Shavelson, 2004), neither the re-
iterated and profusely argued appeals for its substitution 
made by a large group of psychometricians (Bentler, 2009; 
McDonald, 1999; Raykov, 1997; Zinbarg, Revelle, Yovel, & 
Li, 2005). Nor did it matter that a weighted sum of items was 
the measure under analysis as in structural equation models 
(SEM) with latent variables. Alpha preceded any analysis re-
garding the construct. Its role was to fulfill the guideline 
from the American Psychological Association Publication 
Manual (2010) to report psychometric quality indicators for 
all outcome measures and covariates. 
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The reasons for the success of α and its survival in the 
scientific literature are wide-ranging. It is applied to a simple 
and stable way to measure a construct such as the sum or the 
mean of item responses; it is easy to share with reviewers 
and readers of social and health science reports; it can be ob-
tained using a simple design, based on a single administration 
of the questionnaire; it is easily calculated in various statisti-
cal software packages or interfaces such as SPSS, SAS or 
Stata. Thus, α became a new example of the well-known di-
vorce between methodological and applied publications in 
psychology during the first years of the 21st century. See 
Izquierdo, Olea and Abad (2014) or Lloret-Segura, Ferreres-
Traver, Hernández-Baeza, and Tomás-Marco (2014) for oth-
er examples of such a divorce.  

Reviewing the 21st-century psychometric literature on 
the use of α reminded us of the epic circumnavigation of the 
globe made by sailors captained by Magellan and Elcano in 
the sixteenth century. The expedition departed from 
Sanlúcar de Barrameda in Spain and following three years of 
hazardous sailing to the West, returned after completing a 
journey around our planet. When Nao Victoria reached its 
departure point, the knowledge gained during the voyage 
would condition the future forever. Mutatis mutandis, in psy-
chometrics, a huge effort has been made in recent years to 
provide internal consistency reliability indicators alternative 
to α. Alternative coefficients have generally been based on 
the measurement model underlying each questionnaire and 
on appropriate estimators for each type of data. After years 
of discussing these new indicators, psychometrics seems to 
have returned to the starting point. See for example, the live-
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ly discussion between supporters of classic and new indica-
tors in the journal “Educational Measurement: Issues and 
Practice” (Davenport, Davison, Liou, & Love, 2016 and ref-
erences therein). Even more relevant, recent publications 
explicitly suggest the return to α when its use provides a cor-
rect estimate of reliability (Green et al., 2016; Raykov, West 
& Traynor, 2015). The most important consequence of this 
particular journey around the world of psychometrics is that 
the internal consistency reliability can no longer be calculated 
by naively obtaining α with a few clicks on a menu. It could 
be adequate for a particular data type, but its use would need 
to be supported by verifying certain underlying assumptions 
(see next section). If these assumptions are not met, alterna-
tive coefficients based on the measurement model should be 
used. During this long journey, internal consistency reliability 
has moved from occupying a central position as a psycho-
metric concept to being a by-product of a measurement 
model; which is nothing really new for those familiar with 
the psychometric measurement models (Birnbaum, 1968; 
Jöreskog, 1971) but has not been routinely included in ap-
plied scale development and evaluation. Dimension-free es-
timators, not based on a specific measurement model, such 
as the greatest lower bound or the Revelle’s β, remain con-
troversial (Bentler, 2009; Raykov, 2012; Revelle & Zinbarg, 
2009; Sijtsma, 2009, 2015) and will not be considered in this 
paper. 

Fortunately, indicators based on measurement models, 
although usually requiring large samples, are still obtained 
based on a single administration of the questionnaire and are 
easy to calculate due to the fact that the present software is 
more accessible. The free software environment R (R Core 
Team, 2016) and the commercial software Mplus (Muthén & 
Muthén, 2017) are among the most popular options. Thus, 
we believe that the next step is to make it easier both for au-
thors and reviewers the routine incorporation of this 
knowledge into their work in order to improve the quality of 
publications which report questionnaire-based measures in 
the field of social and health sciences. 

Our voice is added to the views of other authors such as 
Brunner, Nagy and Wilheim (2012), Crutzen and Peters 
(2015), Graham, (2006) or Green and Yang (2015). In com-
parison, our work is more procedurally oriented and includes 
several specific contributions, namely: a rationale for the 
need to include a phase of data screening in the analysis and 
how to conduct it, an outline of estimation methods and 
goodness-of-fit indices for SEM models with quantitative 
and categorical variables, a comprehensive set of formulas 
and procedures for point and confidence interval (CI) esti-
mation of internal consistency reliability, a method to deter-
mine when α would in practice be indistinguishable from 
SEM based indices, as well as a practical way to conduct the 
whole analysis in R and a decision chart synthetizing the 
analysis.  

The aim of this paper is to provide an updated set of 
practical rules to study the internal consistency reliability of 
the sum or average of responses to items designed to meas-

ure a single construct. Both are composite measures with 
equally weighted items. A rationale is provided for the use of 
the rules as well as examples of application to various types 
of data. Furthermore, appendices containing the annotated 
R-syntax are provided aimed at researchers both experienced 
and unfamiliar. Generalization to complex measurement 
models and practical consequences for design and data anal-
ysis are also discussed. 

In the following, this paper is structured in five sections. 
First, the basic measurement model concepts and derived re-
liability estimates are presented. In this context, the cases 
where α usage might be adequate are also discussed. Next, 
the practical application of these concepts is included in a 
procedure in three phases, namely, (a) data screening, (b) 
measurement model fitting, and (c) internal consistency reli-
ability estimation. The procedure is applied to items with a 
quantitative response scale and to items with an ordinal re-
sponse scale. Furthermore, four cases illustrating the ap-
proach in frequent scenarios in applied research are com-
pletely resolved. The fourth section is devoted to the discus-
sion of the approach in more complex situations. This in-
cludes multidimensional models, items loading on more than 
one factor, designs with missing and/or multilevel data, and 
the application to the development of new scales. The paper 
concludes with a practical summary of the main recommen-
dations including a decision making chart. 

 
Measurement model and reliability coefficient 
for unidimensional composite scores 
 
According to CTT, the observed responses are the sum of a 
true or systematic score (T) plus an uncorrelated random er-
ror term with zero mean (E). The reliability coefficient is de-
fined as the ratio of true score variance to observed score 
variance, which in turn is the sum of true plus error variance 
(Lord & Novick, 1968): 
 

 

(1) 

 
The value of the reliability coefficient lies between 0 and 1, 
and values above .70 are routinely considered acceptable 
when developing a new measure, values above .80 are ac-
ceptable for research purposes such as comparing group 
means, and values above .90 are needed for high stakes indi-
vidual decision making (Nunnally, 1978). A well-known 
property of the coefficient is that true variance depends not 
only on the questionnaire characteristics but also on the vari-
ability of the construct in the population under analysis. All 
things being equal, the more variable the construct, the high-
er the reliability. 

As CTT is a merely theoretical model, a common strate-
gy to obtaining an empirical estimate of reliability is the in-
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ternal consistency approach based on a single-test single-
administration design. This approach conveys the additional 
assumption that responses to the items share a single under-
lying construct and allows true and total variances to be de-
rived from confirmatory factor analysis (CFA) parameter es-
timates (e.g., McDonald, 1999). The measurement model 
underlying a CFA is represented graphically in Figure 1 
where, by convention, each item (Yj) is represented in 
squares as they are observable variables, the construct or fac-
tor (F) and the errors (εj) are represented in ovals as they are 
not directly observable variables, and the relations between 
variables are represented by arrows. 

 
Figure 1. Measurement model with six items loading in a single factor. 

 
The construct is a latent variable, that is, not directly ob-

servable but inferred from the observable variables that are 
responses to items. The relationship between the construct 
and the item is linear and quantified by the factor loading 

( ). Lambda is a measure of item discrimination interpreted 
as a regression coefficient: when there is an increase of one 

unit in the factor, there is an increase of  units in the item 
j. Note that linearity is only appropriate for items that are 

normally distributed. Each item is also characterized by its 
difficulty index, quantified in CFA by the intercept or score 
in the item when the score in the factor is zero. Finally, the 
error term is unique for each item; it is uncorrelated with the 
factor score and also with the errors of the other items.  

Setting the factor variance to 1 for model identification 
purposes, it can be shown (Jöreskog, 1971; McDonald, 1999) 
that the reliability of a score obtained as sum or mean of the 
items is: 

 

 

(2) 

 
or the ratio between the true score variance derived from es-
timated model parameters and the sum of item variances and 
covariances implied by the model. This estimator was labeled 
coefficient omega by McDonald, composite reliability by 
Raykov (1997), and internal consistency reliability estimated 
by SEM by other authors (e.g., Yang & Green, 2011) as CFA 
is part of SEM procedures. A more general equation based 
on a non-standardized latent variable can be found in Ray-
kov (2012). 

According to McDonald (1999), if the measurement 
model fits the data, Equation 2 can be rewritten substituting 
the denominator by the sum of observed item variances 

( and covariances ( : 
 

 

(3) 

 
In fact, McDonald considers it even more convenient to use 
Equation 3. Other experts such as Bentler (2009) prefer 
Equation 2 as the covariance matrix reproduced by a model 
is a more efficient estimate of the covariance matrix popula-
tion than the product-moment estimate. If the model fits the 
data, the practical consequences will be negligible. In con-
trast, if the model does not fit the data, we share McDon-
ald’s recommendation that none of the coefficient omega 
expressions should be used to estimate internal consistency 
reliability.  

As seen below, omega is currently a family of internal 
consistency reliability coefficients derived from CFA param-
eter estimates. Most of these coefficients have been derived 
relaxing uncorrelated errors, normality and unidimensionality 
assumptions to accommodate real data properties. Alpha it-
self is a member of the family and based on very restrictive 
assumptions. 
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Reliability of essentially tau-equivalent 
measures  
 
The omnipresent α is an unbiased estimator of internal con-
sistency reliability provided that the essentially tau-equivalent 
measurement model fits the data (e.g., Jöreskog, 1971, 
McDonald, 1999). This model is depicted on the left of Fig-

ure 2. Note that the factor loadings of all the items have 
been equated. This reflects the assumption that all discrimi-
nation parameters are equal, that is, when controlling for the 
factor score difference between two groups of examinees, 
the difference of item scores between the two groups will be 
constant across all items.  

 

 
Figure 2. Model of essentially tau-equivalent measures on the left, measurement model with correlated errors between three items on the right. 

 
If essential tau-equivalence holds, the value of the coeffi-

cient omega is equal to the value of α which, in turn, equals 
other coefficients developed earlier for the same purposes 
such as the Guttmann’s Lambda 3 (e.g., Revelle & Zinbarg, 
2009). The numerator of previous Equation 3 in this case 
reduces to the product of the number of items squared ( ) 

by the factor loading squared ( ). The unweighted least 
squares (ULS) estimator of the squared factor loading is the 
average covariance between the items and the denominator 
is the sum of observed variances and covariances between 
the items. 

 

 

(4) 

Consequently, if the essentially tau-equivalent measurement 
model fitted the data, it would be good practice to calculate 
α to provide an estimate of the internal consistency reliability 
of the sum or average of the items.  
 
Reliability of congeneric measures 
 
As anyone with experience in CFA knows, factor loadings of 
items are not usually equal at first sight. This fact is better 
modelized by the congeneric measurement model which 
permits different discriminative power across items. In fact, 
this is the general unidimensional factor model depicted in 
Figure 1 explained before. If the congeneric measurement 
model fits the data and the more restrictive essentially tau-
equivalent model does not, the internal consistency of the 
sum or average of the items should be estimated using the 
coefficient omega in Equation 2 or in Equation 3. 
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The relationship between α and omega for congeneric 
not essentially tau-equivalent measures has been thoroughly 
studied. First of all, it has been shown that α is lower than 
omega and can thus be trusted as the lower limit of reliability 
(Raykov, 1997). Second, simulation studies have shown that 
the difference between α and omega has no practical conse-
quences when factor loadings are on average .70 and the dif-
ferences between them are within the interval -.20 and +.20 
(Raykov & Marcoulides, 2015). Therefore, if these condi-
tions are met, we can continue using α as the point estimator 
of internal consistency reliability, which may even be desira-
ble for practical reasons, according to these authors. Other-
wise, omega should be used as α would underestimate the in-
ternal consistency reliability, at least in the event of a statisti-
cally significant difference between α and omega (Deng & 
Chan, 2016).  

Finally, simulation studies (Gu, Little, & Kingston, 2013), 
showed that neither the number of non-tau-equivalent items 
in a questionnaire nor the magnitude of the differences be-
tween factor loadings produce sizeable biases when using α 
to estimate population reliability. Larger biases are due to 
correlated errors and small ratios of true to error variance.  
 
Reliability of measures with correlated errors 
 
We turn now to measures where the uncorrelated errors as-
sumption is not tenable. A well-known case occurs when a 
questionnaire contains items positively and negatively word-
ed that measure the same construct. In this case, once the ef-
fect of the latent variable is controlled, the positively worded 
items still retain a not negligible covariance with each other, 
as do negatively worded items. This situation can be model-
ized specifying some correlations between errors other than 
zero (Figure 2, right; see e.g., Brown, 2015; Marsh, 1996) or 
as a method factor due to the composition of the question-
naire (Figure 4, see below and also Gu et al., 2013) or even 
as a parameter due to respondents’ individual differences 
(Maydeu-Olivares & Coffman, 2006). For the sake of sim-
plicity, in this section we will focus on the first and briefly 
refer to the remainder below when dealing with the assump-
tion of unidimensionality. 

If not taken into account, the presence of correlated er-
rors has serious effects on internal consistency reliability es-
timation. Estimates of factor loadings are incorrect (e.g., 
Brown, 2015) and both omega and α are biased estimators of 
population reliability although the bias is much greater if α is 
used (Gu et al., 2013). In addition, α can no longer be trusted 
as the lower limit of reliability of scale scores (Raykov, 2001). 
In fact, depending on the parameter configuration of the 
measurement model, α bias could lead to underestimating or 
even worse, to overestimating population reliability, giving a 
false sense that scale scores are reliable when actually the 
opposite is true.  

Bias should be corrected by including the covariance be-
tween errors in both the model parameter estimation and the 

omega formula, as shown below (Raykov, 2004; see Bollen, 
1980 for the original unstandardized factor formulation): 

 

 

(5) 

 
The sum of the elements of the implied variance-covariance 
matrix in the denominator clearly illustrates the difference 
between Equation 5 and Equation 2. Again, if the model 
with correlated errors fits the data and thus model parame-
ters have been correctly estimated, Equation 3 using the ob-
served variance-covariance matrix in the denominator would 
provide very similar results.  

The simulation studies by Gu et al. (2013) showed that, 
in the presence of correlated errors, alpha may overestimate 
population reliability with differentials as high as .38. This 
would mean, for instance, that a score with a true reliability 
of .40, which is completely unacceptable, may result in an α 
value of up to .78, which may lead to the erroneous conclu-
sion of fairly good reliability. All conditions being equal, the 
omega coefficient corrected for correlation between errors 
gives a bias of -.09, practically negligible and therefore pref-
erable. These authors conclude that α seems to treat the cor-
relation between errors as if it were part of the true variance 
thus producing overestimation of reliability. We will return 
to this point below when dealing with the unidimensionality 
assumption.  
 
Why and how to conduct the analysis 
 
Incorrectly estimating reliability has undesirable consequenc-
es in all applied fields where questionnaires are used. In in-
strument development, reliability underestimation can lead 
researchers to make unnecessary improvement efforts, 
whereas overestimation brings unwarranted confidence to 
the questionnaire. Even if obtaining the lower limit of relia-
bility could suffice for questionnaire development, it would 
not be enough for subsequent use. In basic or applied re-
search, the effect sizes can be seriously affected if a biased 
reliability estimate is used to calculate the correction for at-
tenuation (Revelle & Zinbarg, 2009). In individual decision 
making, a biased reliability estimate would affect the stand-
ard error of measurement, which can lead to inadequate de-
cisions in interpretation and communication of scores. 

When based in an internal consistency design, reliability 
estimation should be derived from a measurement model fit-
ted using SEM methods. In this section we present a proce-
dure in three analytic phases and postpone the discussion of 
the costs of such an analytical strategy until the final section 
of the paper.  

Phase 1: Screening of the item responses. The univariate 
distributions and relations between items are studied in order 
to make decisions on variable types and possible item clus-
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tering that can affect model specification and estimation in 
the next phase.  

Phase 2: Fitting the measurement model to the data. This 
is a confirmatory activity, therefore it starts by specifying the 
suitable models derived from prior knowledge of the ques-
tionnaire, continues estimating parameters and evaluating the 
goodness of fit and the adequacy of the solution for all suit-
able models. As a result, the measurement model with con-
ceptual meaning and good fit to the data is chosen. For pur-
portedly unidimensional questionnaires, the analyst should 
consider essentially tau-equivalent, congeneric and, perhaps, 
correlated error measurement models. These are nested 
models, the essentially tau-equivalent being the most restric-
tive model (i.e., with fewer free parameters to be estimated) 
and the correlated error model the least restrictive. 

Phase 3: Calculation of the internal consistency reliability 
coefficient derived from the measurement model parameters 
and its standard error in order to provide an interval estimate 
of reliability.  

Our proposal is aligned with those of other authors that 
suggest always performing Phase 2 and deriving from it the 
reliability estimation in Phase 3 of the analysis (e.g., Crutzen 
& Peters, 2015; Graham, 2006; Green & Yang, 2015). For 
the sake of correction, in addition to the two consensual 
phases we believe it essential to stress the implicit third stage 
in the analysis. A previous screening of the data should be 
carried out to correctly decide on the association matrix to 
be analyzed and the estimator of the measurement model pa-
rameters. See for example, the book chapters by Behrens, 
DiCerbo, Yel, and Levy (2012), Malone and Lubansky (2012) 
and Raykov (2012), or the papers by Lloret-Segura et al. 
(2014) and by Ferrando and Lorenzo-Seva (2014) in a previ-
ous issue of this journal. Put simply, in Phase 1 of the analy-
sis the distributions of item responses and the relations 
among them should be analyzed to determine the type of da-
ta and to detect items differentially related to the others or 
item clustering. This phase will allow the analyst to decide 
whether to treat their data as quantitative or as ordi-
nal/categorical, two options that will be addressed in the fol-
lowing two sections, and also to decide on a possible correc-
tion for correlated errors, whose treatment will be seen in 
more detail in the next section on practical scenarios.  

Additionally, in Phase 3 we suggest giving an interval es-
timation of the reliability. Although it has been customary to 
publish the point estimate of internal consistency coeffi-
cients, it should be taken into account that they are statistical 
indicators obtained in a sample and thus affected by standard 
error. Consequently, the 95% CI should be published as 
usual in the social and health sciences. The standard error 
for reliability coefficients can be estimated by bootstrap 
(Kelley & Pornprasertmanit, 2016; Raykov & Marcoulides, 
2015) or approached using the analytical delta method (Ray-
kov, 2012; Padilla & Divers, 2016). The less computationally 
demanding delta method provides results comparable to the 
bootstrap with nonbinary items and large samples (greater 
than 250 cases, Padilla & Divers, 2016).  

Quantitative data analysis 
 
Item responses obtained on a quantitative scale (e.g., vis-

ual analogue scale) are continuous, quantitative data. Re-
sponses obtained on a rating scale such as a Likert type scale, 
are ordered categories which can be analyzed as continuous 
variables provided that the number of categories is high (5 or 
more) and the frequency distribution does not show floor or 
ceiling effects (Rhemtulla, Brosseau-Liard, & Savalei, 2012). 
This is the main decision to be taken in Phase 1. 

All plausible measurement models for the data at hand 
would be specified using CFA in Phase 2. At the very least, 
essentially tau-equivalent and congeneric measures should be 
considered. Next, the model parameters will be estimated, 
goodness of fit indices calculated, and the best fitting, parsi-
monious and interpretable measurement model will be cho-
sen. The estimated parameters will be used to obtain the in-
ternal consistency reliability in the next phase. All these op-
erations can currently be performed quite easily using com-
mercial software such as Mplus (Muthén & Muthén, 2017) 
and also the free software environment R (R Core Team, 
2016). See next sections for examples and syntax in R.  

We outline here the procedures for model fitting in SEM 
but the full details exceed the objectives of this paper. See 
references such as Abad, Olea, Ponsoda and García (2011), 
Brown (2015) or Hoyle (2012) for an in-depth treatment on 
parameter estimation, model fit, model comparison and revi-
sion.  

Either the full data matrix of cases by items or the covar-
iance matrix between items will be analyzed. If the multivari-
ate normal distribution holds, the maximum likelihood esti-
mation method (ML) will be used and the goodness of fit 
tested using global and local fit indicators. A statistically null 
value of χ2 together with parameter values and standard er-
rors within acceptable range would provide evidence favor-
ing the measurement model being tested. Complementarily, 
decision-making can be supported using approximate fit in-
dices, such as the comparative fit index (CFI), the Tucker-
Lewis index (TLI) and the mean square error of approxima-
tion (RMSEA), all ranging between 0 and 1. Roughly speak-
ing, the values of CFI and TLI should be greater than .95 
and that of RMSEA less than .05 for the model to be con-
sidered appropriate.  

Nested models can be compared based on χ2 difference 
between them. This formal comparison can also be com-
plemented evaluating the differences between the approxi-
mate fit indices. It is generally considered that two nested 
models fit equally well to the data if the difference in χ2 is 
statistically non-significant and also if the differences be-
tween the approximate fit indices are less than .01.  

Minor deviations from normality, even in the case of or-
dered categories not presenting floor or ceiling effects, can 
be handled using the robust maximum likelihood estimation 
(MLR) and associated χ2, CFI, TLI and RMSEA indices. Pa-
rameters are still estimated using normal theory ML, but 
standard errors and overall fit indices are corrected for non-
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normality. However, the comparison between nested models 
is not so direct, since the difference between corrected χ2 
values is not interpretable. Satorra-Bentler or Yuan-Bentler 
correction factors should be applied (Muthén & Muthén, 
n.d.). 

Regardless of the estimator used, Phase 2 of the analysis 
concludes choosing the most parsimonious model with con-
ceptual sense and good fit to data. During Phase 3 of the 
analysis the estimated parameters will be used to calculate 
the alpha or omega coefficients when appropriate and the 
standard error will be obtained using bootstrap in general or 
delta method in large samples in order to provide an interval 
estimate. 

 

Ordinal and dichotomous data analysis 
 

Many questionnaires have categorical response formats, 
with two (e.g., Yes / No) or more options (e.g., Strongly 
Disagree / Disagree / Agree / Strongly Agree). Therefore, 
the analyst often faces binary or graded/ordered categorical 
data. In Phase 1 of the analysis, special attention will be paid 
to the number of response categories that have actually been 
used by respondents and also to the distribution form. If the 
number of response categories is four or less, or even with 
five or more response categories showing prominent ceiling 
or floor effects, the parameter estimation in the next phase 
can no longer be approximated by normal theory based es-
timators. An appropriate estimator for categorical data 
should be used instead, again according to the recommenda-
tion by Rhemtulla, Brosseau-Liard and Savalei (2012) also 
mentioned in the previous section. 

To conduct Phase 2 of the analysis, the analyst can 
choose between three options (e.g., Bovaird & Koziol, 
2012). The first is to aggregate multiple items before analysis 
(parceling), which provide quantitative data to be analyzed. 
This solution remains very controversial (Little, Rhemtulla, 
Gibson, & Schoemann, 2013; Marsh, Lüdtke, Nagengast, 
Morin, & Von Davier, 2013) and is only credible if stable be-
tween different, equally plausible forms of parceling items 
(Raykov, 2012). The second option is keeping the analysis at 
the item level and estimating the parameters of a plausible 
item response theory (IRT) model for these data. This strat-
egy uses full information estimation (based on response pat-
terns) and can be applied to one, two, three or four parame-
ter models. The third option is still item-level analysis but 
the limited information estimation (based on polychoric or 
tetrachoric correlation matrix) of CFA is used for one and 
two parameter models. We adopt the third option in this pa-
per as it facilitates the generalization of the concepts dealt 
with up to now and is equivalent to some of the most usual 
normal-ogive IRT models (e.g., Cheng, Yuan y Liu, 2012; 
Ferrando & Lorenzo-Seva, 2017).  

The model for categorical item responses is depicted in 
Figure 3. To account for ordinality, a latent continuous re-
sponse distribution (Yj

*) is defined that leads to an observed 
ordered categories distribution (Yj). The latent response is 
related to the observed response through discrete thresholds 

(Muthén, 1984). In other words, when there is a change in 
Yj

* that crosses the threshold between two response catego-
ries, the discrete observed value of the observed variable Yj 
changes to the adjacent category. The cumulative normal dis-
tribution is usually taken as a link function between thresh-
olds and cumulative proportions of responses. Otherwise, 
the latent model for Yj

* is the same as the model in Figure 1. 
Therefore, the measurement models to be considered will 
still be those of essentially tau-equivalent measures, of con-
generic measures and the model of measures with correlated 
errors. Changes occur only in estimation techniques. Nowa-
days, most statistical packages for SEM include options to 
correctly fit measurement models for ordinal data. Again, the 
commercial software Mplus and the free software environ-
ment R are among the most popular. See sections below for 
a developed example and syntax in R.  

 

 
Figure 3. Measurement model with six items answered in an ordinal 

response scale loading in a single factor. 
 

As with quantitative data, an outline of the procedure for 
Phase 2 follows. See references such as Brown (2015), Han-
cock and Mueller (2013), or Hoyle (2012) for a more in-
depth treatment. The procedure begins with the estimation 
of the polychoric correlation matrix for items with three or 
more categories, or tetrachoric correlation for dichothomus 
items. Secondly, the measurement model is fitted to this cor-
relation matrix using an estimation method appropriate to 
the categorical nature of the variables. The most suitable es-
timation method for a wide range of sample sizes is robust 
weighted least squares with a mean and variance adjusted χ2 
statistic (WLSMV, e.g., Bovaird & Koziol, 2012), even if for 
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small samples (close to 200 cases) the ULS method can be a 
good alternative (Forero, Maydeu-Olivares, & Gallardo-
Pujol, 2009). The interpretation of results including the 
goodness of fit indices and the comparison of nested models 
still require more training in this case, so we strongly rec-
ommend consulting the mentioned specialized texts and be-
ing up to date regarding new developments in this field (e.g., 
Huggins-Manley & Han, 2017; Maydeu-Olivares, Fairchild, 
& Hall, 2017; Sass, Schmitt, & Marsh, 2014).  

Once the estimates of the model parameters are ob-
tained, the internal consistency of the sum of latent item var-
iables Yj

* can be estimated from the ordinal omega coeffi-
cient (Elosua & Zumbo, 2008; Gadermann, Guhn, & 
Zumbo, 2012). Consistent with Equation 2, these authors 
propose calculating the coefficient from the estimated pa-
rameters, both in the numerator where the true score vari-
ance would be obtained from the estimated factor loadings, 
and in the denominator where the true plus error variance 
would be obtained by the sum of the elements of the implied 
polychoric correlation matrix. As is customary, if the model 
fits the data well, the elements of the polychoric correlation 
matrix in coherence with Equation 3 can be used. Addition-
ally, being the sum of elements of a correlation matrix the 
denominator can be simplified, so for a questionnaire with  
congeneric measures ordinal omega reduces to Equation 6 
where  refers to the polychoric correlation coefficients: 

 

 

(6) 

 

For essentially tau-equivalent measures the ordinal alpha co-
efficient can be used (Elosua & Zumbo, 2008; Gadermann 
et al., 2012; Zumbo, Gadermann, & Zeisser, 2007), where 
the numerator is simplified in coherence with Equation 4: 

 

 

(7) 

 
As occurs with α for quantitative data, the ordinal alpha co-
efficient is only recommended if an essentially tau-equivalent 
model underlies the data, while the ordinal omega coefficient 
is recommended if the underlying model is that of congener-
ic measures (Gadermann et al., 2012; Napolitano, Callina, & 
Mueller, 2013). Once again, the bias using ordinal alpha 
would be more serious when correlated errors had not been 
specifically addressed in the model, as they would be includ-
ed in the numerator as part of the true variance. 

Ordinal coefficients are advantageous in that they consti-
tute a straightforward generalization of linear omega coeffi-
cients, but are limited as they do not assess the reliability of 
the observed item sum or mean (Yj ), but that of the underly-
ing latent continuous responses (Yj*). If the researchers are 
interested in the reliability of the item sum, a better choice is 

the nonlinear SEM reliability (Green & Yang, 2009; Yang & 
Green, 2015). The conceptual formula is close to that of or-
dinal omega, but the normal cumulative probability of the 
thresholds is included both in the numerator and in the de-
nominator in order to express the true and error variances in 
the metric of the observed item sum. The actual calculation 
is complex, therefore the authors provide the SAS code in an 
appendix (Green & Yang, 2009). CI for nonlinear SEM reli-
ability coefficient can also be obtained using R (Kelley & 
Pornprasertmanit, 2016) provided that the congeneric meas-
urement model is acceptable. 

In the event that researchers chose to fit an IRT meas-
urement model, the internal consistency reliability could still 
be derived from the estimated parameters. As in the case of 
CFA, the IRT models provide estimates of the item parame-
ters and the distribution of the latent variable that allow 
quantifying variance of the total scores, true scores and er-
rors as conceived in the CTT (Kim & Feldt, 2010 and refer-
ences therein), and from these variances reliability can be es-
timated as the ratio of true score variance over total score 
variance as defined in Equation 1. 

For unidimensional dichotomous data and a congeneric 
measurement model, Dimitrov (2003) developed the point 
estimation of the internal consistency reliability for one, two 
or three parameter models, provided that the items had been 
previously calibrated. To avoid computational complexities, 
Dimitrov proposed using approximate calculations so that 
the formulas can be easily implemented into a spreadsheet, 
basic statistical programs or programmed in R. Raykov, Di-
mitrov and Asparouhov (2010) further developed these ideas 
by incorporating them into a method that simultaneously al-
lows the item calibration and the interval estimation of in-
ternal consistency reliability for the item sum both for one 
and two parameter models. As customary, they provide the 
syntax for Mplus users to estimate the model parameters and 
the CI of internal consistency reliability in a single run.  

 
Application to four practical scenarios 

 
To illustrate the above concepts, we present four examples 
which mimic applied research situations where the sum or 
mean of responses to multiple items are aimed at measuring 
a single construct. In each of the four scenarios, we analyzed 
the simulated responses of 600 people to 6 items in a five-
point Likert scale. A noticeable difference with applied re-
search is related to the origin of prior knowledge regarding 
compatible measurement models. In applied research this 
necessary prior knowledge proceeds from the underlying 
theory and previous studies, whereas in our examples it 
comes from the knowledge of the underlying simulated 
models. 

In Case 1 an essentially tau-equivalent measurement 
model with high factor loadings close to .65 underlay the da-
ta, and the response distributions were symmetric. Accord-
ingly, it was expected that descriptive statistics would suggest 
analyzing data as quantitative, that the essentially tau-
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equivalent measurement model would be the best fitting 
model, and that the omega value would be equal to alpha 
value. In Case 2, the underlying model was the congeneric 
measurement model with homogeneously high factor load-
ings and symmetric response distributions. Consequently, it 
was expected that item responses could be treated as quanti-
tative, the best fitting model would be congeneric measure-
ment model, and alpha would be expected to be close to 
omega due to the homogeneously high factor loadings. In 
Case 3, the underlying model had highly variable factor load-
ings plus three items with correlated errors, response distri-
butions still being symmetric. Therefore, there were three 
expectations, descriptive statistics to support a quantitative 
subsequent analysis, the best fitting model to be that of 
measures with correlated errors, and alpha value to be undu-
ly greater than omega mainly due to the fact that omega cor-
rects for the correlation between errors whereas alpha treats 
this correlation as true variance. Finally, in Case 4 the under-
lying model was congeneric measurement model with highly 
variable factor loadings and with strong ceiling effects in the 
response distributions. In this case, it was expected that de-
scriptive statistics would suggest treating data as ordinal and 
that the congeneric measurement model would show the 
best fit. Regarding the two reliability coefficients, they are 
expected to show a sizeable difference as ordinal alpha esti-
mates the reliability of essentially tau-equivalent latent re-
sponses, whereas the non-linear SEM reliability coefficient 
estimates the reliability of congeneric observed responses. 

The analyses were carried out using R. Phase 1, descrip-
tive analysis, was conducted using the reshape2 (Wickham, 
2007) and psych (Revelle, 2016) packages to calculate the re-
sponse percentages, other descriptive statistics, and the Pear-
son or polychoric correlation coefficients when appropriate. 
In Phase 2, the nested measurement models were analyzed 
using the cfa function from the lavaan package (Rosseel, 
2012) choosing the ML estimate in the first three cases, as 
per quantitative data, and the WLSMV estimate in Case 4, as 
per ordinal data. In order to facilitate comparison, in Phase 3 
both α and omega coefficients were obtained for the best fit-
ting parsimonious measurement models using the reliability 
function of the semTools package (semTools Contributors, 
2016). When available, the 95% confidence intervals were 
calculated using the ci.reliability function of the MBESS pack-
age (Kelley & Pornprasertmanit, 2016). All decision making 
was based on the criteria described in the previous sections. 
The data for the examples are available at 
http://ddd.uab.cat/record/173917 and the syntax used can 
be found in Appendix A and Appendix B of this paper. 

Table 1 presents univariate and bivariate descriptive sta-
tistics for all scenarios. In Case 1, the central categories 
showed the highest percentage of responses and no ceiling 
or floor effects were observed. The values of skewness 
ranged between -0.11 and 0.10, and those of kurtosis be-
tween -0.29 and -0.64, so that the data were treated as quan-
titative although they proceed from the responses to a five-
point Likert scale. All Pearson correlation coefficients were 

positive and homogeneous ranging from .31 to .47. There-
fore, we decided to test the two plausible measurement 
models, congeneric versus essentially tau-equivalent, using 
the ML estimator. The results are presented in the first two 
lines in Table 2. The most constrained model tested, the es-
sentially tau-equivalent measurement model, showed good fit 
to the data, χ2 (14) = 22.02, p = .078, CFI = .992, TLI = 
.991, RMSEA = .031. As the χ2 difference with the more 
flexible congeneric measurement model was not statistically 
significant, χ2 (5) = .09, p = .999, we chose the essentially 
tau-equivalent measurement model in application of the par-
simony principle. Thus, all assumptions were met for α (see 
Equation 4) to be a good estimator of internal consistency 
reliability. As expected, the α estimate of .809 was the same 
as the omega estimate. The internal consistency of the sum 
or average of the items in Case 1 was within the usual stand-
ards with 95%CI values between .784 and .831. 

The exploration of the data in Case 2 also led us to treat 
them as quantitative. Indeed, descriptive statistics in Table 1 
showed the frequencies on a five-point scale without ceiling 
or floor effects, with skewness not higher than 0.19 in abso-
lute value, kurtosis not higher than 0.85 in absolute value, 
and homogeneous correlation coefficients between items in 
a range between .26 and .53. In consequence, the congeneric 
and essentially tau-equivalent measurement models were 
tested using the ML estimator. As seen in Table 2, unac-
ceptable fit was obtained when the constraint of equal factor 
loadings was imposed (essentially tau-equivalent measures), 
χ2(14) = 46.78, p < .001, CFI = .969, TLI = .967, RMSEA = 
.062. A considerable improvement in fit was observed when 
factor loadings were allowed to be different across items in 
the more flexible congeneric measurement model, χ2 (9) = 
20.46, p = .015, CFI = .989, TLI = .982, RMSEA = .046. 
Moreover, the χ2difference between both models was statis-
tically significant, χ2 (5) = 26.32, p <.001, indicating a better 
fit of the congeneric measurement model. Thus, in this case, 
internal consistency estimates should be obtained using the 
coefficient omega (see Equation 2). However, as already an-
ticipated, both the coefficient omega (.823) and the coeffi-
cient alpha (.820) showed similar values as all factor loadings 
were homogeneously high (between .60 and .83). The mini-
mum values of both CIs were well above the usual stand-
ards, constituting evidence in favor of the internal consisten-
cy of the scale scores.  

Again, in Case 3 all descriptive statistics suggested ana-
lyzing data as quantitative. The response distributions in five 
categories did not show extreme responses and the skewness 
and kurtosis indices were not higher than the absolute values 
of 0.17 and 0.51 respectively (see Table 1) and therefore the 
ML estimator was deemed appropriate. However, as ex-
pected, the correlation coefficients were not homogeneous 
since very high correlations, greater than .78, between three 
items (Y4, Y5, Y6) were observed, while the remaining cor-
relations ranged between low and moderate from .05 to .43. 
These three items showed a special clustering that would be 
modeled as correlated errors.  
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Table 1. Results of Phase 1 in four practical scenarios: Univariate descriptive statistics and correlation coefficients. 

 
Univariate statistics Correlations 

%1 %2 %3 %4 %5 M SD s k Y1 Y2 Y3 Y4 Y5
Case1                 

 Y1 14.67 26.17 38.50 16.17 4.50 2.70 1.05 0.10 -0.51      
 Y2 9.17 17.67 37.00 22.33 13.83 3.14 1.14 -0.09 -0.64 .31     
 Y3 10.83 25.00 42.33 18.50 3.33 2.79 0.98 -0.04 -0.38 .43 .43    
 Y4 3.50 18.33 35.83 30.50 11.83 3.29 1.01 -0.11 -0.54 .47 .33 .42   
 Y5 2.83 14.67 43.83 26.50 12.17 3.31 0.96 0.00 -0.29 .41 .42 .46 .43  
 Y6 4.67 20.33 39.17 28.17 7.67 3.14 0.98 -0.09 -0.41 .42 .40 .43 .46 .46

Case2                  
 Y1 17.00 27.17 32.67 17.50 5.67 2.68 1.12 0.17 -0.70      
 Y2 7.33 19.33 36.17 24.17 13.00 3.16 1.11 -0.07 -0.63 .26     
 Y3 14.50 23.67 35.33 19.17 7.33 2.81 1.13 0.07 -0.68 .39 .37    
 Y4 7.50 19.33 28.17 27.67 17.33 3.28 1.18 -0.19 -0.85 .47 .33 .46   
 Y5 5.50 18.00 35.67 24.33 16.50 3.28 1.11 -0.09 -0.68 .42 .42 .46 .50  
 Y6 7.33 21.67 32.17 28.00 10.83 3.13 1.10 -0.11 -0.70 .42 .44 .48 .53 .52

Case3                
 Y1 14.67 26.17 38.50 16.17 4.50 2.70 1.05 0.10 -0.51      
 Y2 6.17 19.33 39.50 24.50 10.50 3.14 1.04 -0.05 -0.46 .05     
 Y3 3.50 16.67 40.50 25.67 13.67 3.29 1.01 -0.02 -0.47 .28 .25    
 Y4 4.67 16.67 36.67 30.00 12.00 3.28 1.03 -0.17 -0.46 .25 .19 .36   
 Y5 11.00 25.33 39.33 18.50 5.83 2.83 1.04 0.07 -0.45 .17 .20 .29 .79  
 Y6 6.83 18.17 40.83 25.50 8.67 3.11 1.02 -0.12 -0.35 .27 .26 .43 .86 .83

Case4                
 Y1 2.17 5.33 9.83 21.33 61.33 4.34 1.00 -1.56 1.72      
 Y2 2.00 5.17 11.50 20.00 61.33 4.34 1.00 -1.49 1.46 .19     
 Y3 0.83 4.33 10.00 20.83 64.00 4.43 0.90 -1.58 1.85 .33 .41    
 Y4 0.67 3.50 12.83 17.67 65.33 4.43 0.89 -1.49 1.41 .39 .47 .64   
 Y5 1.50 3.83 12.00 21.83 60.83 4.37 0.94 -1.50 1.67 .39 .44 .57 .61  
 Y6 1.67 4.17 12.33 20.17 61.67 4.36 0.96 -1.50 1.58 .44 .46 .39 .54 .44

Note. %1 to %5: response percentages to each category; s = skewness; k = kurtosis. Pearson (Case1, Case2 and Case3) or polychoric (Case4) correlation coef-
ficients. 

 
As shown in Table 2, the fit of the essentially tau-

equivalent measurement model was not acceptable, χ2 (14) = 
608.25, p < .001, CFI = .669, TLI = .645, RMSEA = .266. 
The goodness of fit indices for congeneric measurement 
model, although better, χ2 (9) = 78.19, p < .001, CFI = .961, 
TLI = .936, RMSEA = .113, were not acceptable, with the 
exception of the CFI. Modeling the high correlations be-
tween items Y4, Y5 and Y6 as correlations between their er-
rors, good fit indices were observed, χ2 (6) = 13.82, p = .032, 
CFI = .996, TLI = .989, RMSEA = .047, except for the sta-
tistically significant χ2. Additionally, a statistically significant 
difference with congeneric measurement model was found, 
χ2 (3) = 64.37, p < .001, indicating that the model with corre-
lated errors presents a significantly better fit than the conge-
neric measurement model. 

In coherence with the fitted measurement model, the in-
ternal consistency estimate was obtained with the coefficient 
omega corrected for correlated errors (see Equation 5). The 
observed value of .560, well under the usual standards, leads 
to the conclusion that the item sum is not a reliable measure. 
This conclusion is consistent with the result of Phase 2, 
where unidimensionality was seriously put into question. 
Both results show that the raw sum scores are not an appro-

priate measure in Case 3. The fact that the essentially tau-
equivalent measurement model did not fit the data, and es-
pecially the presence of items with correlated errors, should 
discourage the use of α to estimate internal consistency relia-
bility. Nevertheless, α was included in Table 2 to illustrate 
the dramatic changes in the conclusion in case α was used, as 
its value of .773 would have easily led to the incorrect belief 
that the items were consistent. 

The distribution of responses in Case 4 showed very 
clear ceiling effects with all items showing more than 60% of 
cases piled in the last response category, as seen in Table 1. 
Although skewness and kurtosis values did not particularly 
stand out, they were out of the range between -1 and 1. Con-
sequently, even if the data came from a five category re-
sponse scale, the response distribution suggests the conven-
ience of considering them as ordinal. For this reason, poly-
choric correlation coefficients were calculated, with quite a 
large range of values between .19 and .64 being observed, 
but no particular clustering of items. For the same reason, 
the WLSMV estimator was used to test the fit of the conge-
neric and essentially tau-equivalent measurement models to 
the data. 
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Table 2. Results of Phase 2 and Phase 3 in four practical scenarios: Main results for measurement models and reliability coefficients.  
 Phase 2 Phase 3 

Case 
(Simulated 

Model) Fitted Model Factor Loadings χ2 df p CFI TLI
RMSEA 
[95% CI] 

Alpha 
[95% CI] 

Omega/ 
nonlinear reliability 

[95% CI] 
Case1 (TM)          

 

TM .66 22.02 14 .078 .992 .991 .031 
[.000, .054]

.809 
[.784, .831] 

.809 
[.786, .830] 

CM .65, .65, .66, .66, .66, .66 21.93 9 .009 .987 .978 .049 
[.023, .075]

  

Case2 (CM)          

 

TM .75 46.78 14 <.001 .969 .967 .062 
[.043, .083]

  

CM .60, .66, .74, .79, .82, .83 20.46 9 .015 .989 .982 .046 
[.019, .073]

.820 
[.797, .842] 

.823 
[.799, .845] 

Case3 (CE)          

 

TM .85 608.25 14 <.001 .669 .645 .266 
[.248, .284]

  

CM .26, .28, .43, .90, .92, .99 78.19 9 <.001 .961 .936 .113 
[.091, .137]

  

CE .36, .41, .47, .57, .67, .68 13.82 6 .032 .996 .989 .047 
[.013, .079]

.773 
 

.560 
[ , ] 

Case4 (CM)          

 

TM 0.69 110.11 14 <.001 .950 .946 .102 
[.084, .121]

  

CM .49, .58, .66, .74, .74, .85 35.15 9 <.001 .994 .989 .045 
[.018, .072]

.830 
 

.777 
[.738, .809] 

Note. All factor loadings are standardized. Italics: coefficient alpha incorrectly estimates the reliability, added for comparison purposes. TM = essentially tau-
equivalent measures; CM = congeneric measures; CE = measures with correlated errors; CFI = Comparative fix index; TLI = Tucker-Lewis index; RMSEA 
= root mean square error of approximation; CI = confidence interval. [ , ] = CI not available. 

 
As observed in Table 2, the fit to the essentially tau-

equivalent measurement model was unacceptable, χ2 (14) = 
100.78, p <.001, CFI = .950, TLI = .946, RMSEA = .102, 
while it was good for the congeneric model, χ2 (9) = 20.07, p 
= .018, CFI = .994, TLI = .989, RMSEA=.045, except for 
the statistically significant χ2 value. Thus, we chose the con-
generic measurement model as the most suitable for these 
data. In coherence with the fitted measurement model, the 
proper estimator was the nonlinear SEM reliability coeffi-
cient (see Green & Yang, 2009) with a value of .777, 95% CI 
[.739, .808]. These values are within accepted standards in 
the scale development process. With the ordinal alpha coef-
ficient (see Equation 7) a clearly superior value of .830 would 
have been obtained although it would be incorrect as the 
tau-equivalence condition is not met. Moreover, ordinal al-
pha estimate the reliability of the sum of latent response var-
iables and not the reliability of the sum of observed respons-
es. 

 

Generalization to complex measurement 
models and designs 
 
In this section the previous rationale and results are general-
ized to essentially unidimensional measures, to multidimen-
sional scales, to multilevel designs and to data with missing 
values, as well as to the use of reliability coefficients in scale 
development and revision. 

Reliability of essentially unidimensional measures 
 

All models discussed so far share the assumption that the 
items measure a single construct. The presence of correlation 
between items after controlling for the common factor, as in 
Case 3, is treated as an anomaly to be corrected. However, 
this is a particular case of a more general topic. Each item 
can measure both the intended construct and other factors 
that the researchers consider spurious. Possible reasons in-
clude questionnaire characteristics, such as the positive or 
negative wording of the items or the presence of testlets, and 
also response biases such as social desirability, negative af-
fect or acquiescence (e.g., Conway & Lance, 2010; Lance, 
Dawson, Birkelbach, & Hoffman, 2010; Spector, 2006). In 
this section we will use the concept of essential undimen-
sionality coined by Stout (1987; see also Raykov & Pohl, 
2013) to discuss a more general way of treating question-
naires that predominantly measure one factor but where ad-
ditional spurious factors formed by item subgroups can be 
identified. 

When spurious sources of variability are suspected, the 
analyst can detect some item clustering through careful ob-
servation of the correlation matrix during Phase 1 of the 
analysis, as illustrated in Case 3. However, the formal analy-
sis is conducted in Phase 2. The specification of a bifactor 
type measurement model (e.g., Reise, 2012) is particularly 
useful for determining essential unidimensionality. In this 
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model, depicted in Figure 4, each item is allowed to load on 
a general factor and also on a group factor that might be 
spurious. More than one group factor can be defined to ac-
commodate various item clusters. If the bifactor model fits 
the data and the researchers believe the group factors to be 
spurious, then they should include this knowledge in Phase 3 
of reliability estimation. The appropriate coefficient labelled 
hierarchical omega by Zinbarg et al. (2005) and applied to 
the diagram of Figure 4 is:  

 

 

(8) 

 
The true variance in the numerator is derived from the gen-
eral factor, whereas the variance due to specific factors is 
treated as error variance by being included only in the de-
nominator. This formulation excludes all spurious variance 
from the numerator of the reliability coefficient, whether at-
tributable to method factors, item specificities, response 
process or random variation. Provided that the model fits 
the data, the sum of observed variances and covariances can 
be used in the denominator, as discussed on presenting 
Equation 3. Omega hierarchical is a more general specifica-
tion for Equation 5 as is explained by Gu et al. (2013) for 
quantitative data and by Yang and Green (2011) for ordinal 
data.  

If previous knowledge regarding possible sources of spu-
rious variance is available, a confirmatory bifactor model can 
be specified and fitted using the lavaan package in R or the 
commercial software Mplus. If researchers wish to provide 
evidence of unidimensionality in the absence of previous 
knowledge regarding particular sources of spurious variance, 
an exploratory bifactor model can be conducted using 
Schmid-Leiman or Jennrich-Bentler rotations (e.g., Mansolf 
& Reise, 2016) using the psych package in R or the commer-
cial software Mplus. This general exploratory approximation 
is more adequate than the somewhat usual practice of pa-
rameter re-specification based on local modification indexes 
derived from a misfitting congeneric measurement model 
(see e.g., Brown, 2102; Hoyle, 2102). 

As reasonable as it sounds, this is only one of the two 
conceptualizations of internal consistency reliability based on 
SEM (Zinbarg et al., 2005). These are derived from the fact 
that conceptually, in factor analysis, the observed score can 
be attributed to four sources of variability, namely, a general 
factor in which all items would load on, group factors 
formed by subgroups of items, factors specific to each item, 
and random variation. In contrast, in CTT, the observed 
score is only divided into two parts: true and error scores. 
Consensus exists in that the general factor is part of the true 
variance and random variation is part of the error variance. 
Group factors due to different item contents would also be 
considered true variance and would make the questionnaire 
multidimensional. The different conceptualizations of relia-
bility come from whether the spurious group factors and the 

specific factors can be considered part of the true variance or 
the error variance. The answer given on calculating hierar-
chical omega is that spurious and specific variability, which 
are not part of the construct, are part of the error variance.  

 

 
Figure 4. Bifactor model with three items showing a method effect. 

 
On the other hand, a more classic conceptualization of 

reliability would sustain that all systematic factors contribute 
to the correlations between items and, even more important-
ly, to correlations with external variables; only random errors 
have the effect of attenuating these correlations. Therefore, 
the reliability of the item sum or mean scores should include 
all systematic variation, whether due to either content, meth-
od or specific factors. This is all the more so if we wish to 
still consider the reliability coefficient as the upper limit of 
the predictive validity coefficient. Researchers who identify 
with this position will favor calculating internal consistency 
reliability through the coefficient that Zinbarg et al. (2005) 
called omega total and whose expression applied to the ex-
ample of Figure 4 is: 
 

 
(9) 

 
In omega total the group factor is considered part of the true 
variance and is therefore included in the numerator. As 
Bentler (2009) warned, the decision to consider spurious and 
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specific factors as part of the true or error variance depend-
ed on the researchers’ objectives. In a single administration 
of a questionnaire intended to measure one construct, the 
discussion is circumscribed to the possible spurious group 
factors, as the factors specific to each item cannot be distin-
guished from the random variation.  

In this context, the proposal of Green and Yang (2015) 
to publish both omega hierarchical and omega total seems 
reasonable. This allows not only evaluating the reliability un-
der the two conceptualizations, but also gives a simple as-
sessment of the unidimensionality. A high similarity between 
the two values would yield favorable evidence for unidimen-
sionality, as the spurious factors would not provide much 
systematic variance. Both omega hierarchical and omega to-
tal can be obtained based on confirmatory bifactor modeling 
using Mplus or the lavaan and semTools packages in R. Their 
exploratory versions can be obtained using the omega func-
tion of the psych package of R.  

Additionally, in longitudinal designs the item specific fac-
tors can be identified and a range of solutions has been pro-
posed to take them into account. McCrae (2014) maintained 
the position that it would be more appropriate to attend to 
test-retest reliability since it certainly includes item specifici-
ty, whereas Bentler (2016) proposed specificity-enhanced in-
ternal consistency indices and Raykov and Marcoulides 
(2016b) provided the rationale and syntax for the estimation 
of specific variance in SEM analysis using the Mplus soft-
ware. 

Finally, we would like to highlight that equations from 
Equation 2 to Equation 9 are pertinent to estimate reliability 
when planning to use the sum or mean of items for later 
predictive, group comparison or longitudinal analyses. These 
are linear combinations with equal weights for all items. 
However, if the aim is to study relationships between latent 
variables in an SEM model, the constructs would be meas-
ured through the optimal linear combination of their indica-
tors, so that their internal consistency reliability would be 
more adequately estimated by the coefficient H (Hancock & 
Mueller, 2001, 2013) also known as maximal reliability (Ray-
kov, 2012).  

 

 

(10) 

 

The ratio between the communality ( ) and specificity 

( ) of each item is the core of coefficient H. The co-
efficient can be interpreted as the maximum proportion of 
variance of the theoretical construct that can be explained by 
its indicators, or put differently, the reliability of the optimal 
linear combination of items. Among its properties, we high-
light that H is equal to or greater than the reliability of the 
most reliable item, it does not depend on the sign of the fac-
tor loadings nor does it decrease when the number of items 

increases. Equation 10 is only adequate if the essentially tau-
equivalent or the congeneric measurement model fit the da-
ta. If a measurement model with correlated errors is used, 
the coefficient should be corrected accordingly (Gabler & 
Raykov, 2017). On the other hand, if an IRT based latent 
score was calculated, reliability should be obtained accord-
ingly (e.g., Cheng, Yang & Liu, 2012). 

However, estimating structural effects between latent 
variables using SEM methodology comes with its own draw-
backs as the use of optimal linear combination provides 
measures that are dependent on the sample and the particu-
lar time point (e.g., Raykov, Gabler & Dimitrov, 2016). 
These authors suggest using this more complex measure on-
ly if absolutely necessary, that is, when the reliability of op-
timal linear combination (coefficient H, Equation 10) is sta-
tistically greater than the reliability of unit weighted linear 
combination (coefficient omega, Equation 2). 

 
Reliability in multidimensional measures 
 
So far, we have focused on unidimensional measurement 

scales perhaps affected by spurious factors, leaving out a 
wide range of useful measurement models. For example, 
how to calculate the internal consistency reliability of scores 
derived from multiple perhaps correlated factors? This is the 
case for numerous scales in the social sciences. An example 
of this would be a motivation measure, which will include at 
least one scale of intrinsic motivation, another of motivation 
oriented externally and perhaps a third of lack of motivation. 
For theoretical reasons, these constructs are expected to be 
correlated with each other, some positively and others nega-
tively. But also, how to calculate the internal consistency reli-
ability of scores derived from a hierarchical measurement 
model, with a general factor and some group factors with in-
terpretable content? Classic examples are measures of a gen-
eral intelligence factor plus specific factors such as verbal in-
telligence, logic, manipulative, etc. Or even more difficult, 
what to do if the entire questionnaire is made up of complex 
items? We refer to items that systematically show low cross 
loadings in several factors besides a higher factor loading in 
the intended factor (Marsh et al., 2010), as for example, per-
sonality tests such as the Big Five Test. 

When faced with these structures, the data analyst could 
still find it useful to follow the procedure in the three previ-
ously described analytic phases. Probably, during Phase 1, 
exploratory, some clusters of variables can be observed, but 
the formal test for multidimensionality will be carried out in 
Phase 2, when studying the fit of the measurement model. 
Empirical evidence can favor a model with multiple orthog-
onal factors or with multiple correlated factors, a bifactor 
model, or even a second order factor model (e.g., 
Ntoumanis, Mouratidis, Ng, & Viladrich, 2015). As in uni-
dimensional cases, it is essential that the adopted measure-
ment model has theoretical sense and fits the data. Rules to 
conduct Phase 3, the calculation of the coefficient omega 
applied to the particular multidimensional scale of interest, 
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will easily be found in or derived from the current literature. 
To give some examples, Black, Yang, Beitra, and McCaffrey 
(2015) explain how to calculate reliability in second-order 
and bifactor factorial models applied to an intelligence test; 
Gignac (2014) the reliability of a general factor coming from 
a multidimensional scale; Green and Yang (2015) the reliabil-
ity of specific factors, applicable to the study of reliability of 
correlated factor models; Raykov and Marcoulides (2012) re-
liability and criterion related validity of multidimensional 
scales; Cho (2016) the coefficient omega in several multidi-
mensional models for quantitative data; or Rodríguez, Reise, 
and Haviland (2016) how to calculate and interpret reliability 
coefficients derived from bifactor models. 

 
Reliability in complex designs: missing data and 
multilevel designs 
 
Another issue to be addressed is how to treat the data 

characteristics derived from the research design and the field 
study. In this regard, researchers may ask: How to calculate 
the internal consistency when individuals are nested in clus-
tering structures such as classrooms, schools, teams or com-
panies, providing multilevel data? And when the data are in-
complete? Our answer would be that the analytical proce-
dure in three phases still works under these conditions. That 
is, provided that the parameters of the measurement model 
are correctly estimated, a natural consequence will be that 
the reliability estimate based on these parameters would be 
correct.  

In the case of multilevel data, in Phase 1 the intraclass 
correlation coefficient can be added to the analysis in order 
to assess the magnitude of the clustering effect. In Phase 2, 
the appropriate correction for clustering should be used, for 
example, adding the syntax line analysis: type = complex in 
Mplus. Once parameters are correctly estimated, in Phase 3, 
the reliability coefficient can be obtained using the equations 
presented in previous sections. An application to multilevel 
data can be found in the paper by Raykov et al., 2015. These 
authors present all details to calculate alpha with MLR esti-
mation and standard errors corrected by clustering including 
the syntax in Mplus. A generalization useful for the analysis 
of heterogeneous populations can be found in Raykov and 
Marcoulides (2014). 

On the other hand, confronting incomplete data requires 
more nuanced strategies. In the first place, extreme caution 
should be exercised in the design of data collection and dur-
ing field study, as the best way to deal with missing data is 
not to have it at all on reaching the analysis stage. Even so, 
specific methods are needed when analyzing a possibly in-
complete database. The details surpass the objectives of this 
paper and can be found in the methodological literature (e.g., 
Enders, 2010, 2013; Graham, 2009), but an outline will be 
presented here. In Phase 1, the proportion of missing data 
should be assessed, as small amounts do not have serious 
consequences in subsequent analyses. If a moderate propor-
tion is present, it is recommended to explore and discuss 

their structure, as data missing at random also have no major 
effects on SEM results if an ML parameter estimator is used. 
Finally the most elaborate strategies would be necessary in 
case the proportion is large and/or not at random. An ex-
ample of missing data not at random can be found in the 
evaluation of the effectiveness of a treatment, in the case 
where some participants abandoned treatment due to it not 
having met their expectations. One of these strategies, the 
inclusion of auxiliary variables, is explained in the paper by 
Raykov and Marcoulides (2016a) where, as usual, these au-
thors include the Mplus syntax to calculate the reliability of 
the scale scores and their CI. Another option is the coefficien-
talpha package developed in R and documented in Zhang 
and Yuan (2016) that allows estimating the coefficients alpha 
and omega and the corresponding CI in the presence of 
missing data and of deviant cases in a manner consistent 
with the methodology of analysis presented here although 
only applied to a restricted range of measurement models. 

 
Change in reliability due to scale revision  
 
Scale development has been another popular use of the 

coefficient alpha. Although validity arguments are much 
more important when constructing a scale, once an item 
pool is relevant and representative to measure a construct, an 
effort can be made to select the subset with greater internal 
consistency. The contribution of an item to the reliability of 
the sum scores was traditionally assessed using the indicator 
known as "alpha if deleted", which consists of evaluating the 
change in reliability due to the item elimination. Again, an 
alpha-based indicator is not recommended as it would bring 
to scale development all the previously mentioned issues re-
garding reliability estimation. Fortunately, the coefficient 
omega can be used to calculate the internal consistency relia-
bility of the scores obtained with any subset of items and, in 
particular, for all items except that whose contribution to the 
set we wish to study. 

The specific procedure was developed by Raykov and his 
colleagues in three successive papers. The initial develop-
ment for items with a quantitative response scale (Raykov, 
2007), was later generalized for dichotomous data (Raykov et 
al., 2010) and finally, to more general conditions, namely, 
non-normal data, multidimensional scales, presence of corre-
lated errors, or missing data (Raykov & Marcoulides, 2016a). 
Following their custom, the authors include appendices con-
taining the syntax needed in the Mplus commercial package. 
Presented below is a procedure distilled from the ideas of 
the three articles. 

First, a reference value should be fixed for the desired re-
liability of the scale. This can be given by normative 
knowledge (e.g., an internal consistency greater than or equal 
to .70) or by previous studies in the field (e.g., to emulate the 
internal consistency of a scale published in another culture) 
or can be derived from data obtained using the scale in its 
current state of development. Next, the measurement model 
will be fitted and coefficient omega for total scores can be 
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obtained if desired. The next step would be to use parameter 
estimates to calculate omega for the subset formed by all but 
the first item, and replicate the calculus for each and every 
item so an indicator “omega if deleted” would result for each 
item. These indicators could be compared visually with the 
chosen reference value analogously to the usual procedure 
used with “alpha if deleted”. However, Raykov and his col-
leagues propose making decisions based on the CI of the dif-
ference between the reference coefficient minus the “omega 
if deleted” coefficient. The contribution of an item to the in-
ternal consistency is relevant if the CI of the difference does 
not include the zero value. If the reference coefficient was 
the current reliability of the scale, the interpretation would 
be as follows: in case the CI is completely above zero, the 
item is useful, since if eliminated, the scale loses reliability. In 
case the CI is entirely below zero, then it is preferable to ex-
clude the item since its presence worsens the total reliability.  

 
Concluding remarks: Returning home with 
new ideas for data gathering and analysis 

 
The aim of this work has been to facilitate the incorporation 
of the most recent psychometric knowledge about the esti-
mation of internal consistency reliability of measures ob-
tained using questionnaires into the daily work of researchers 
and reviewers in the fields of social and health sciences. To 
do this, we have first examined the reasons for using α or the 
coefficient omega in estimating the internal consistency reli-
ability in unidimensional scales. We have furnished two types 
of methodological reasons for decision making, some based 
on the measurement model underlying the data and others 
based on simulation studies on the bias of using either coef-
ficient. Secondly, we have offered a practical guide to devel-
oping the analysis, providing the necessary syntax in the free 
software environment R and have commented on the results 
of several examples. Finally, we have outlined the main ideas 
for the application of the basic concepts to the analysis of 
dimensionally complex questionnaires, to multilevel designs 
with missing data, and to scale development. In this conclud-
ing section, we draw some practical consequences for the 
design, data collection procedures, and data analysis derived 
from the reasoning throughout the paper. 

When preparing the popular one-test one-administration 
design for data collection, the researchers make decisions 
that will definitively condition future data analysis and re-
sults. We would like to highlight three of them, namely, the 
sample size determination, the gathering of predictive co-
variates of missing data, and devising of procedures to attend 
to response process and completeness of data.  

The determination of the sample size for reliability esti-
mation needs to be put into context. On the one hand, relia-
bility of measures is usually estimated within a pilot study 
with relatively few cases and the naive use of alpha can give 
grossly biased estimates. On the other hand, the more cor-

rect estimates based on SEM methods require large samples 
in order to achieve stable results (Yang & Green, 2010) 
therefore the costs for the pilot study could rise dispropor-
tionately due to the adoption of this methodology. Thus, be-
fore thanking alpha for its services and using SEM derived 
estimators henceforth (McNeish, 2017) or completely avoid-
ing SEM models due to their difficulties (Davenport et al., 
2016) it is worth carefully considering when we need to shift 
from alpha to omega. The knowledge of the questionnaire 
and its psychometric performance in previous studies can 
greatly help to limit the cost of the pilot study without com-
promising the correct estimation of the reliability. According 
to the results of simulation studies discussed throughout this 
paper, α is quite a good reliability estimator for congeneric 
models with high factor loadings and a large number of 
items (Gu et al., 2013; Yang & Green, 2010). The main 
threat to a correct reliability estimation comes from unmod-
eled correlated errors or method effects, a threat which 
worsens with low factor loading to error ratios (Gu et al., 
2013) and in measures based on a small number of items 
(Graham, 2006).  

Consequently, in the event the previous psychometric 
data showed high factor loadings for all items in one factor 
without any spurious effects, it would be pertinent to opt for 
a first approximation to the internal consistency reliability es-
timation using α. A more comprehensive analysis of the 
measurement model could be postponed until obtaining data 
from the main study, which will normally be based on larger 
samples which are more suitable for this purpose. This strat-
egy would keep the sample size and the costs of the pilot 
study within reasonable limits.  

On the contrary, if the questionnaire contained a few 
items per measure, or if there were any doubts regarding the 
size of the factor loadings or the unidimensionality, it would 
be safer to estimate internal consistency reliability starting 
from the appropriate measurement model using SEM meth-
odology and thus collecting larger samples from the begin-
ning. Finally, in case previous results compromised the quali-
ty of the measure, it would be good to have in mind this in-
formation at the design stage when still deciding on the 
measures to be included in the main study and consider the 
opportunity to include further development of the measure 
in the pilot study. 

Regarding missing data and response processes, although 
robust statistical methods have been developed to face both 
incomplete data and response biases, the best time to ad-
dress them is during the data gathering stage. All efforts 
should be made to facilitate the respondents’ participation in 
order to increase the quality of the data and ultimately of the 
conclusions. Additionally, it is advisable to record possible 
predictors of missingness. As we have seen (see also Raykov 
& Marcoulides, 2016a), their inclusion in subsequent anal-
yses will allow correcting the bias due to missing data not 
randomly distributed.  
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Figure 5. Decision diagram of the three analytical phases involved in the estimation of internal consistency based on confirmatory factor analysis. 

Note. Recommended coefficients for data analyzed as ordinal are reported in brackets. SEM = structural equation modelling. CFA = confirmatory factor 
analysis; ML = maximum likelihood; MLR = robust maximum likelihood; WLSMV = weighted least squares mean and variance adjusted; ULS = unweighted 

least squares; α = Cronbach’s alpha coefficient; ω = reliability coefficient(s) derived from linear SEM; ρNL = nonlinear SEM based reliability. See main text 
for details. 

 
Turning to data analysis, in Figure 5 we present a deci-

sion diagram synthesizing the ideas developed in previous 
sections. Coherent with the approach taken in this paper, we 
propose conducting the analysis in three phases. During 
Phase 1, the analyst should consider the sample size, the re-
sponse scale format, and the results from the exploration of 
the univariate distributions and of the relationships between 
the items. The first decision, based on the response distribu-
tions, would be whether the data should be treated as quanti-
tative or ordinal/categorical. When the response scale is 
quantitative and responses are normally distributed, model 
parameters will be estimated from the variance-covariance 
matrix through an ML estimator. When the number of cate-
gories in the response scale is equal or above five and no 
clear ceiling or floor effects are observed, the data can be 
treated as quantitative. Variance-covariance matrix will be 
analyzed generally using an ML estimator. Minor deviations 

from normality can be managed correctly using a robust es-
timator for the standard errors (MLR). In contrast, data 
should be treated as ordinal/categorical if the response scale 
has less than five categories or even five or more categories 
and the response distributions present piling of cases at the 
scale end. Polychoric or tetrachoric correlation matrix will be 
analyzed generally using the WLSMV estimator, or the ULS 
estimator with small sample sizes. 

Phase 2 of the analysis consists of fitting the measure-
ment model. The decision is whether to choose the best fit-
ting parsimonious measurement model with theoretical 
sense. In line with this paper, in Figure 5 the analysis begins 
with the more restrictive model, the essentially tau equivalent 
measures model, and progresses relaxing its assumptions 
successively. However, the analysis can begin at any point, 
testing the more plausible model according to the research-
ers’ expectations and the initial exploration of item relations. 
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If the scale is at least essentially unidimensional, the decision 
involves three nested models, the essentially tau equivalent, 
congeneric, and correlated errors measures or bifactor. On 
the other hand, if none of these models fit the data, or if the 
scale is multidimensional, more complex modeling options 
would have to be explored, such as correlated factors, sec-
ond order factors, bifactor with non-spurious group factors, 
or items with cross-loadings models.  

Finally, in Phase 3, we recommend the correct internal 
consistency coefficient always reported according to the data 
type, the measurement model structure and researchers’ vi-
sion regarding true variance composition. Firstly, we’ll refer 
to the data analyzed as quantitative. If essentially tau-
equivalent measures were supported, both coefficients alpha 
and omega would be correct reliability estimators of the item 
sum or mean. If congeneric measures were supported, the 
use of omega would be more appropriate, although the dif-
ference with alpha would not be very prominent in case fac-
tor loadings were high. If decision-making leads us to accept 
the model with correlated errors or a bifactor model with 
spurious factors as well as a general one, then the research-
ers’ vision of true variance comes into play. If spurious fac-
tors were treated as part of the error variance, it would be 
appropriate to correct for correlated errors or use hierar-
chical omega, whereas if they were considered part of the 
true variance, total omega should be used instead. Finally, in 
case a multidimensional measurement model was accepted, 
reliability should be calculated attending to current methodo-
logical literature recommendations. This is due to the fact 
that the correct formula to calculate both true and observed 
variances for each subscale of interest should be derived 
from the accepted measurement model. 

Turning to unidimensional ordinal data, the best choice 
is the nonlinear SEM reliability coefficient developed by 
Green and Yang (2009) as true and observed variances are 
calculated in the item sum metric. This coefficient is repre-
sented within brackets in Figure 5. Even so, particularly in 
correlated errors measurement models, attention should be 
paid to the correct estimation of factor loadings, in order to 
ensure the correct estimation of true variance in the numera-
tor of the reliability formula. As seen when discussing Equa-
tion 3, the observed variance could be calculated through 
observed data, which makes the denominator less model de-
pendent. This nonlinear reliability coefficient was recently 
developed and we expect that its performance in diverse 
conditions will continue to be studied in the future. 

It would also be useful to consider what other coeffi-
cients to report in each study. For example, it could be inter-
esting to routinely report α, and in case α and the SEM de-
rived coefficient differed, to comment on which of them is 
more credible based on the measurement model. If wide-
spread, this habit would serve at least two goals. First, when 
applied to well-known questionnaires, it would make new 
psychometric studies comparable to previous ones, where 
most likely only α was included. Secondly, and most im-
portantly, it would help to increase the knowledge regarding 

the performance of α in a variety of applied contexts and, 
particularly, to assess in which empirical settings the differ-
ence between α and omega would be practically negligible. 
As implied by Raykov and Marcoulides (2015), this would be 
an important contribution toward bridging the gap between 
methodological and applied literature. In addition, if the 
measurement model involved method effects, spurious fac-
tors or correlated errors, it would be very convenient to re-
port both omega hierarchical and omega total coefficients 
and discuss their possible differences as suggested by Green 
and Yang (2015) and also to derive the expected conse-
quences on the performance of the measure in various con-
texts including prediction, group comparison and longitudi-
nal studies.  

Another important aspect to keep in mind is that any re-
liability estimate based on SEM depends on the underlying 
measurement model, and also on several aspects of the anal-
ysis. The most important are (a) the parameter estimation 
method used (e.g., ML, MLR, ULS, WLSMV), (b) the specif-
ic formula that can be based either on implied covariance 
matrix as in Equation 2 or on observed covariance matrix as 
in Equation 3, and (c) the CI estimation techniques such as 
various types of bootstrap or delta methods. Therefore, it is 
recommended that all this information be reported in every 
study aiming to facilitate its understanding, replication and 
correct inclusion in meta-analytic studies.  

As mentioned in the introduction, our proposal consid-
ers the coefficient of internal consistency reliability as a by-
product of the measurement model. Our view is in agree-
ment with other authors who suggest always fitting a meas-
urement model and deriving reliability coefficients from pa-
rameter estimates (e.g., Crutzen & Peters, 2015; Graham, 
2006, Green & Yang, 2015). In this line, our contribution 
consists of highlighting the previous phase of data screening. 
We also agree in that is time to provide resources to help 
these practices to be incorporated into the routine work of 
researchers and reviewers as stated for instance by Cho 
(2016); Dunn, Baguley, and Brunsden (2014); or Zhang and 
Yuan (2016). However, we do not fully agree that providing 
simplified resources to estimate omega through a few clicks 
by the analyst will yield publications with better reliability es-
timates. In our opinion, the range of measurement models 
and parameter estimation techniques to be considered makes 
it difficult, if not impossible, to develop a comprehensive 
simplified resource. For instance, Cho’s (2016) ExcelTM cal-
culator considers a variety of models that apply to the sum 
of quantitative items; the rules given by Dunn et al. (2014) to 
calculate omega using R, will be adequate for unidimensional 
measures and reliability coefficients derived from linear CFA 
models; and Zhang and Yuan’s (2016) R based online inter-
face to robustly estimate alpha and omega applies to a re-
stricted range of models for quantitative data. Those re-
sources may be helpful in some particular cases, but are 
clearly insufficient for ordinal response scales. 

On the contrary, we believe that a knowledgeable analyst 
is the best guarantor of a correct analysis and ultimately of 
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publications with better reliability estimates. Thus, one final 
concluding remark is that all efforts should be made to de-
velop the analysis based on a deep knowledge of theory and 
the previous results related to the questionnaire, as well as on 
a vast knowledge of the possibilities of design, statistical 
modeling, and appropriate estimates of internal reliability co-
efficients. This requires researchers and reviewers with spe-
cialized training in both the applied and methodological 
spheres and we believe this training particularly helpful in 
order to bridge the gap between method developments and 
applied research practices. By sharing the syntax in the free 
software environment R applied to some simple but arche-

typical examples, we hope to stimulate the curiosity of our 
readers to run a complete analysis based on provided data 
and to feel tempted to apply the whole procedure to their 
own internal consistency reliability estimation needs. 
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Appendix A. 
R syntax used to estimate the internal consistency in four practical scenarios.  
 
See http://ddd.uab.cat/record/173917 for data bases and Table 1 and Table 2 for selected output. See the main text for addi-
tional details. Appendix A is recommended for experienced users of R. Beginners may also find useful the comments in Ap-
pendix B. 

 
#Defining the working directory 
setwd("c:/workingdirectory") 
 
#Installing packages needed to perform the analyses 
#Don’t run if already installed! 
install.packages("reshape2", dependencies = TRUE) 
install.packages("psych", dependencies = TRUE) 
install.packages("lavaan", dependencies = TRUE) 
install.packages("semTools", dependencies = TRUE) 
install.packages("MBESS", dependencies = TRUE) 
 
#Loading packages needed to perform the analyses 
#Run at the beginning of a new working session 
library(reshape2) 
library(psych) 
library(lavaan) 
library(semTools) 
library(MBESS) 
 
#Case 1: essentially tau-equivalent measures  
#Reading data, see Table B1 for the data structure  
C1<-read.table('Case1.txt',header=TRUE) 
 
#Phase 1  
#Response percentages 
prop.table(table(melt(C1)),1)*100 
#Other univariate statistics 
describeBy(C1) 
#Pearson correlations 
lowerCor(C1, digits = 3) 
 
#Phase 2  
#Specification of the essentially tau-equivalent model 
C1tau <- 'Factor1 =~ L*Y1 + L*Y2 + L*Y3 + L*Y4 + L*Y5 + L*Y6' 
#model estimation and fit 
CFA_C1tau <- cfa(C1tau, C1,std.lv = TRUE) 
#output 
summary(CFA_C1tau, fit.measures = TRUE) 
#Specification, estimation and fit of the congeneric measurement model 
C1cong <- 'Factor1 =~ Y1 + Y2 + Y3 + Y4 + Y5 + Y6'  
CFA_C1cong <- cfa(C1cong, C1,std.lv = TRUE) 
summary(CFA_C1cong, fit.measures = TRUE) 
 
#Phase 3  
#point estimation of coefficients alpha and omega 
reliability(CFA_C1tau) 
#Interval estimation of coefficient alpha  
ci.reliability(data=C1, type='alpha', interval.type='bsil', B=500) 
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#Interval estimation of coefficient omega for essentially tau-equivalent measures 
ci.reliability(data=C1, type='alpha-CFA', interval.type='bsil', B=500) 
 
#Case 2: congeneric measures with homogeneously high factor loadings 
#Reading data 
C2<-read.table('Case2.txt',header=TRUE) 
 
#Phase 1  
# Response percentages 
prop.table(table(melt(C2)),1)*100 
#Other univariate statistics 
describeBy(C2) 
#Pearson correlations 
lowerCor(C2, digits = 3) 
 
#Phase 2  
C2tau <- 'Factor1 =~ L*Y1 + L*Y2 + L*Y3 + L*Y4 + L*Y5 + L*Y6' 
#model estimation and fit 
CFA_C2tau <- cfa(C2tau, C2,std.lv = TRUE) 
#output 
summary(CFA_C2tau, fit.measures=TRUE) 
#Specification, estimation and fit of the congeneric measurement model 
C2cong <- 'Factor1 =~ Y1 + Y2 + Y3 + Y4 + Y5 + Y6'  
CFA_C2cong <- cfa(C2cong, C2,std.lv = TRUE) 
summary(CFA_C2cong, fit.measures=TRUE) 
 
#Phase 3  
#point estimation of coefficients alpha and omega 
reliability(CFA_C2cong) 
#Interval estimation of coefficient alpha  
ci.reliability(data=C2, type='alpha', interval.type='bsil', B=500) 
#Interval estimation of coefficient omega for congeneric measures  
ci.reliability(data=C2, type='omega', interval.type='bsil', B=500) 
 
# Case 3: measures with correlated errors  
#Reading data 
C3<-read.table('Case3.txt',header=TRUE) 
 
#Phase 1 
# Response percentages 
prop.table(table(melt(C3)),1)*100 
#Other univariate statistics 
describeBy(C3) 
#Pearson correlations 
lowerCor(C3, digits = 3) 
 
#Phase 2 
#Specification, estimation and fit of the tau-equivalent and congeneric measurement models 
C3tau <- 'Factor1 =~ L*Y1 + L*Y2 + L*Y3 + L*Y4 + L*Y5 + L*Y6' 
CFA_C3tau <- cfa(C3tau, C3, std.lv = TRUE) 
summary(CFA_C3tau, fit.measures=TRUE) 
C3cong <- 'Factor1 =~ Y1 + Y2 + Y3 + Y4 + Y5 + Y6' 
CFA_C3cong <- cfa(C3cong, C3, std.lv = TRUE) 
summary(CFA_C3cong, fit.measures=TRUE) 
#Specification, estimation and fit of the measurement model with correlated errors  
C3err_corr <- 'Factor1 =~ Y1 + Y2 + Y3 + Y4 + Y5 + Y6 
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    Y4 ~~ Y5 
    Y4 ~~ Y6 
    Y5 ~~ Y6' 
CFA_C3err_corr <- cfa(C3err_corr, C3, std.lv = TRUE) 
summary(CFA_C3err_corr, fit.measures=TRUE) 
 
#Phase 3 
#point estimation of coefficients alpha and omega 
reliability(CFA_C3err_corr) 
#interval estimation not available 
 
#Case 4: ordered categorical data 
#Reading data 
C4<-read.table('Case4.txt',header=TRUE) 
 
#Phase 1 
# Response percentages 
prop.table(table(melt(C4)),1)*100 
#Other univariate statistics 
describeBy(C4) 
#Polychoric correlations 
polychoric(C4) 
 
#Phase 2 
#Specification, estimation and fit of the tau-equivalent and congeneric measurement models for categorical ordered items 
C4tau <- 'Factor1 =~ L*Y1 + L*Y2 + L*Y3 + L*Y4 + L*Y5 + L*Y6' 
CFA_C4tau <- cfa(C4tau, C4,std.lv = TRUE, ordered = names(C4)) 
summary(CFA_C4tau, fit.measures=TRUE) 
C4cong <- ' Factor1 =~ Y1 + Y2 + Y3 + Y4 + Y5 + Y6'  
CFA_C4cong <- cfa(C4cong, C4,std.lv = TRUE, ordered=names(C4)) 
summary(CFA_C4cong, fit.measures=TRUE) 
 
#Phase 3 
#point estimation of coefficients alpha and omega 
reliability(CFA_C4cong) 
#Interval estimation of coefficient omega for congeneric categorical items 
ci.reliability(data=C4, type='categorical', interval.type='bca')



778                                                              Carme Viladrich et al. 

anales de psicología, 2017, vol. 33, nº 3 (october) 

Appendix B. 
Guide for the estimation of internal consistency in four scenarios using R.  
 
This guide is recommended for beginners. See http://ddd.uab.cat/record/173917 for data bases and Table 1 and Table 2 for 
selected output. See additional details in main text. 

To estimate internal consistency reliability in R, (a) prepare R for a working session (b) read the data to be analyzed and 
(c) perform the analysis in the three phases recommended in the main text. In Appendix B we describe the main features of R 
and the syntax lines you need to know in order to obtain the results in Table 1 and Table 2. The easiest way to run an exam-
ple is to paste the syntax lines provided in Appendix A into R and if necessary, adapt them to your own analysis. 
 
Working with R 
 
If the free software environment R is not available on your computer, it can be downloaded free of charge at https://www.r-
project.org/. The syntax provided in this Appendix can be used in any R interface, either the simple Rconsole or more devel-
oped interfaces such as RCommander, RStudio o DeduceR, which provide additional facilities besides the console.  

To achieve results, launch R, wait for the prompt > to appear in the console, write a syntax line next to the prompt, press 
the enter key, and read the output below the syntax line. See below an extremely synthetic description of the R language, syn-
tax features, file input/output, and installation commands. More information can be found at the R website (https://www.r-
project.org/)  

Regarding R language, you will use functions that read data and create objects containing the output. For example, when 
applied to quantitative data, the function reliability() produces an object containing α using Equation 3 and coefficient omega 
using Equation 5. All R functions are included in packages. For example, the package psych allows calculating Pearson corre-
lation coefficients with the function lowerCor(), polychoric correlation coefficients with the function polychoric()and reliabil-
ity coefficients with the function reliability(). Some packages are available as a default, but most must be installed and loaded 
before use. Finally, R has multiple packages and functions to carry out the same analysis (e.g., the CI for α can be obtained us-
ing the package psych or the package MBESS). We have selected some of them in the syntax provided in Appendix A. 

Turning to the syntax features, R is case sensitive, so reliability(C1) is not the same as either reliability(c1) or as Reliabil-
ity(C1). Among the special symbols to be found in the provided syntax, # denotes a comment that will not be evaluated by R 
but can be useful for human readers, <- is used to store a result into a new object, + - * / = are the obvious mathematical 
and logical operators and =~ is used to define factors in CFA. As for the naming conventions, R is somewhat flexible. Some 
names are camel case (e.g., semTools) others are separated by dots (e.g., install.packages) or use underscores (e.g., 
CFA_C1tau).  

Regarding file input and output, it is useful to use a working directory defined by the user. Data files must be available at 
the working directory in order to be read using the syntax provided in Appendix A. 

To prepare your working session, set the working directory and activate all necessary packages. The present working di-
rectory is found with the function: 

 
getwd() 
 
To change the working directory, the function setwd()should be used, indicating the new directory in brackets and quota-

tion marks. Note that in R, directories are defined with the / slash instead of the usual \ bar. For example: 
 

setwd("c:/workingdirectory") 
 
The installation of the packages is done using the function install.packages()in which the name of the package is indicated 

in brackets and quotation marks.  
In order to obtain the results in Table 1, we used the following packages: reshape2 to obtain the tables of frequencies or 

proportions and psych to obtain univariate statistics and Pearson or polychoric correlations. As for the results in Table 2, they 
were obtained using lavaan to specify, estimate and fit all measurement models, semTools to calculate the point estimates of 
coefficients omega and alpha and MBESS for the calculation of CI. So, the syntax reads: 

 
install.packages("reshape2", dependencies = TRUE) 
install.packages("psych", dependencies = TRUE) 
install.packages("lavaan", dependencies = TRUE) 
install.packages("semTools", dependencies = TRUE) 
install.packages("MBESS", dependencies = TRUE) 
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When running this command, a list of repositories (CRAN mirror) can be displayed. Select one, preferably geographically 
close, and wait for the prompt > to appear in the console when the installation is finished. Once installed, the packages will 
remain in your local R files until removed using the function remove.packages()with the same conventions. 

Every time a new working session is started, the packages must be loaded with the function library()indicating the name of 
the package in brackets: 

 
library(reshape2) 
library(psych) 
library(lavaan) 
library(semTools) 
library (MBESS) 
 
From that moment until the end of the working session, all functions of the loaded packages will be available. If you wish 

to obtain information about a particular package, for example, how to define their functions correctly, simply write the sym-
bol ?? followed by the package name: 

 
?? semTools 
 
Reading data 
 
Data can be read in different formats, but here we suggest using a simple text file. Table B1 shows a few lines of the data 

file of Case 1. Each line contains data from one respondent to all items and each column contains all responses to one of the 
six items. The values are separated using tab as a delimiter. The first row of the file contains a name for each item, in this case 
Y1, Y2, Y3, Y4, Y5 and Y6. This file was saved with the name of Case1.txt. During the analysis session, the data file must be 
available in the directory defined as working directory in R.  

 
Table B1. First five records of case 1  

Y1 Y2 Y3 Y4 Y5 Y6  
2 2 3 3 2 1 
3 4 2 3 3 4 
4 4 3 4 4 3 
3 2 4 3 3 3 
1 3 2 3 3 2 

 
This type of data file can be read with the function read_table (). In the bracket you should include two pieces of infor-

mation, the name of the data file in quotation marks, and whether the first row contains (header=TRUE) or not (head-
er=FALSE) the name of the variables. In our syntax the command was as follows: 

 
C1<-read.table('Case1.txt', header=TRUE) 
 
The content of the data file is transferred, by the symbol <-, to an object with a name specified by the user (in this exam-

ple C1) for future reference. To check whether the table has been defined correctly simply write the name of the object and 
press the enter key:  
C1 
 
Conducting the analysis 
 
Case 1: Analyzing essentially tau-equivalent measures 
 
The R syntax necessary to conduct the three phases of the analysis and to achieve the results included in Table 1 (Phase 1) 
and Table 2 (Phase 2 and Phase 3) are described in turn. 
 
Phase 1: Describing data 
 

The following command would provide the table of response frequencies to each category for each item: 
 
table(melt(C1))  



780                                                              Carme Viladrich et al. 

anales de psicología, 2017, vol. 33, nº 3 (october) 

We used the following command for the table of percentages: 
 
prop.table(table(melt(C1)),1)*100 
 
The basic descriptive statistics, such as mean, standard deviation, skewness and kurtosis were obtained by:  
 
describeBy(C1) 
 
The Pearson correlation matrix was obtained using:  
 
lowerCor(C1, digits = 3) 
 
From results in Table 1 we concluded that the responses to the items in Case 1 could be treated as quantitative, using ML 

estimation to test the measurement models. See the main text for a more detailed discussion. 
 
Phase 2: Determining the best fitting measurement model 
 
The essentially tau-equivalent measurement model was defined as follows: 
 
C1tau <- 'Factor1 =~ L*Y1 + L*Y2 + L*Y3 + L*Y4 + L*Y5 + L*Y6' 

 
where the latent variable (Factor1) is defined (= ~) as the weighted sum of the six items (Yj). The weight (L) is a constant for 
all items to specify the assumption of essential tau-equivalence. The result of the analysis is transferred (<-) to an object that 
the user has named C1tau.  

 
The command: 
 
CFA_C1tau <- cfa(C1tau, C1,std.lv = TRUE) 
performs a confirmatory factor analysis (cfa) under the model defined in C1tau on data stored in C1 . The results will be 

standardized (std.lv = TRUE) and stored (<-) in the object CFA_C1tau. The estimation method is ML by default. 
 
The goodness of fit indices for the model were obtained as a summary of the object CFA_C1tau with the following 

command: 
 
summary(CFA_C1tau, fit.measures=TRUE) 
 
The congeneric measurement model was analogously defined and fitted, simply erasing the constant weights restriction 

and storing the result under a new user defined name (C1cong): 
 
C1cong <- 'Factor1 =~ Y1 + Y2 + Y3 + Y4 + Y5 + Y6'  
CFA_C1cong <- cfa(C1cong, C1,std.lv = TRUE) 
summary(CFA_C1cong, fit.measures=TRUE) 
 
As expected, the goodness of fit indices for both models (see Table 2) favored the tau-equivalent measurement model for 

Case 1, as discussed in detail in the main text.  
Finally, it may be useful to keep in mind that if you wish to use a different estimator to the default, you must specify the 

desired estimator in quotation marks. For example, if you wish to use a robust estimator for quantitative data, the command 
would read: 

 
CFA_C1cong <- cfa(C1cong, C1,std.lv = TRUE, estimator ="MLR") 
 
Phase 3: Obtaining the reliability coefficients for essentially tau-equivalent measures 
 
The output of the command: 
reliability(CFA_C1tau) 
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provide various point estimates for reliability. Two were included as results for Case 1 in Table 2. The first is the 
Cronbach’s alpha coefficient, labeled in the output as alpha, and calculated using Equation 4 with an ULS estimator. The 
third, labeled in the output as omega2, is obtained using a general formula for coefficient omega, the Equation 5. When applied 
to congeneric or tau-equivalent measures, such as those in Case 1, the result is equivalent to Equation 2 due to the fact that 
correlations between errors are all zero. 

Alternatively, the commands: 
 
ci.reliability(data=C1, type='alpha', interval.type='bsil', B=500) 
ci.reliability(data=C1, type='alpha-CFA', interval.type='bsil', B=500) 

 
provide interval estimates respectively for coefficients alpha and omega under the assumption of essentially tau equivalent 
measures. First, the data to be analyzed is specified with data=. Next, the internal consistency coefficient is specified with 
type=. The option 'alpha' stands for Cronbach’s alpha coefficient obtained using Equation 4 with an ULS estimator. The op-
tion 'alpha-CFA' stands for the coefficient omega for tau-equivalent measures using Equation 2 with an ML estimator. The 
method used to estimate the standard error of measurement and therefore the CI is specified with interval.type=. The option 
in the example, 'bsil', uses bootstrap to calculate SE and logistic transformation is used to build CI. The number of bootstrap 
replications is defined in B=. The results can be seen in the column Phase 3 of Table 2. Alternatively, with large samples, the 
less computationally demanding delta method can be used, specifying interval.type='mll'for ML estimation with logistic trans-
formation or interval.type='mlrl' for MLR estimation with logistic transformation. 

As a conclusion, all reliability estimates were deemed to be within the accepted standards. See the main text for details. 
 
Case 2: Analyzing congeneric measures 
 
The results for Phase 1 and Phase 2 included in Table 1 and Table 2 were obtained using the data table for Case 2 

(Case2.txt), and replacing C1 with C2 in the above syntax. As the best fitting model was the congeneric measurement model, 
the estimation of reliability coefficients during the Phase 3 changed with respect to Case 1. Only commands with changes are 
commented here. 

The command: 
 
reliability(CFA_C2cong) 
 
provide both Cronbach’s alpha and omega coefficients using the same estimation methods as in the previous case. Note 

that, even if tau-equivalence or at least high factor loadings are required for alpha to be correct, no warning is issued in the 
output. It is the researcher’s responsibility to make decisions on the values to be published. 

Interval estimations can be obtained applying the function ci.reliability() to the data C2, specifying type='alpha' for α and 
type='omega' for coefficient omega. The option type='omega' applies Equation 2 to the parameters estimated by ML under 
the congeneric measurement model and constitutes the main change with respect to the previous case. The complete com-
mands read: 

 
ci.reliability(data=C2, type='alpha', interval.type='bsil', B=500) 
 
ci.reliability(data=C2, type='omega', interval.type='bsil', B=500) 
 
We concluded that both alpha and omega were appropriate and very close estimates for reliability as expected due to the 

homogeneously high factor loadings of the congeneric measurement model. See the main text for details. 
 
Case 3: Analyzing measures with correlated errors 
 
The results for Phase 1 and Phase 2 included in Tables 1 and 2 were obtained using the appropriate data table named 

“Case3.txt” and replacing C1 with C3 in the above syntax. As neither tau-equivalent nor congeneric measurement models fit-
ted the data, Phase 2 was completed testing a more flexible model which allowed some correlated error terms. The estimation 
of reliability coefficients during Phase 3 changed accordingly. Only the commands including changes are commented. 

The correlation between errors was modelled as follows: 
 
C3err_corr <- 'Factor1 =~ Y1 + Y2 + Y3 + Y4 + Y5 + Y6 
Y4 ~~ Y5 
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Y4 ~~ Y6 
Y5 ~~ Y6' 
 
where ~~ is used to indicate the correlation between the error terms of items Y4, Y5 and Y6.  
 
Again, the model was estimated and fitted with the usual commands: 
 
CFA_C3err_corr <- cfa(C3err_corr, C3, std.lv = TRUE) 
summary(CFA_C3err_corr, fit.measures=TRUE) 
 
The point estimation of alpha and omega was obtained with: 
reliability(CFA_C3err_corr) 
 
As discussed in the main text, the value of alpha is an incorrect reliability estimate under the correlated errors model and 

was included in Table 2 only for illustration purposes. The correct estimator is the value labeled in the output as omega2 ob-
tained using Equation 5. Finally, the CI for omega was reported as not available in Table 2 due to the fact that presently no 
options for the ci.reliability()function allow calculation of the CI of omega coefficient in models with correlated errors.  

 
Case 4: Analyzing ordinal data 
 
The results for Phase 1 included in Table 1 were obtained using the appropriate data table named “Case4.txt” and replac-

ing C1 with C4 in the above syntax. Although data came from responses to five point Likert scales, they were treated as ordi-
nal due to the strong ceiling effects. Accordingly, the polychoric correlation matrix was obtained in Phase 1 using the com-
mand:  

 
polychoric(C4) 
 
In case items were dichotomous, the matrix of tetrachoric correlations could be obtained using the tetrachoric () function. 
 
The specification of ordered categorical measurement models requires declaring ordinal variables using the option or-

dered=names() into the cfa() function. The complete analysis for categorical congeneric model would read: 
 
C4cong <- 'Factor1 =~ Y1 + Y2 + Y3 + Y4 + Y5 + Y6'  
CFA_C4cong <- cfa(C4cong, C4,std.lv = TRUE, ordered=names(C4)) 
summary(CFA_C4cong, fit.measures=TRUE) 
 
In accordance with the ordinal nature of the data, the estimation of reliability coefficients during Phase 3 should change. 

The command:  
 
reliability(CFA_C4cong) 
 
calculate ordinal internal consistency coefficients so the value labeled as alpha in the output is the ordinal alpha defined in 

Equation 7. The value labeled as omega3 is the nonlinear SEM reliability coefficient by Green and Yang. All other omega val-
ues in the output should be avoided as they are not interpretable values for categorical data. The correct estimate of reliability 
of Case 4 is the nonlinear SEM reliability, even if both alpha ordinal and nonlinear SEM reliability were included in Table 2 
for illustration purposes. 

Finally, the interval estimation of nonlinear based SEM reliability can be obtained with the function ci.reliability()and the 
options type='categorical' to define the categorical nature of the data and interval.type='bca' to select the bias corrected and 
accelerated bootstrap method. The whole syntax line would read: 

 
ci.reliability(data=C4, type='categorical', interval.type='bca') 


