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Título: El análisis factorial exploratorio de los ítems: una guía práctica, re-
visada y actualizada. 
Resumen: El Análisis Factorial Exploratorio es una de las técnicas más 
usadas en el desarrollo, validación y adaptación de instrumentos de medida 
psicológicos. Su uso se extendió durante los años 60 y ha ido creciendo de 
forma exponencial al ritmo que el avance de la informática ha permitido. 
Los criterios empleados en su uso, como es natural, también han evolucio-
nado. Pero los investigadores interesados en asuntos sustantivos que utili-
zan rutinariamente esta técnica permanecen en muchos casos ignorantes de 
todo ello. En las últimas décadas numerosos trabajos han denunciado esta 
situación. La necesidad de actualizar los criterios clásicos para incorporar 
aquellos más adecuados es una necesidad urgente para hacer investigación 
de calidad. En este trabajo se revisan los criterios clásicos y, según el caso, 
se sustituyen o se complementan con otros más actuales. El objetivo es 
ofrecer al investigador aplicado interesado una guía actualizada acerca de 
cómo realizar un Análisis Factorial Exploratorio consonante con la psico-
metría post-Little Jiffy. Esta revisión y la guía con las recomendaciones co-
rrespondientes se han articulado en cuatro grandes bloques: 1) el tipo de 
datos y la matriz de asociación, 2) el método de estimación de factores, 3) el 
número de factores a retener, y 4) el método de rotación y asignación de 
ítems.  Al final del artículo hemos incluido una versión breve de la guía.  
Palabras clave: AFE; ACP; matriz de asociación; estimación de factores; 
número de factores; rotación de factores. 

  Abstract: Exploratory Factor analysis is one of the techniques used in the 
development, validation and adaptation of psychological measurement in-
struments. Its use spread during the 1960s and has been growing exponen-
tially thanks to the advancement of information technology. The criteria 
used, of course, have also evolved. But the applied researchers, who use 
this technique as a routine, remain often ignorant of all this. In the last few 
decades numerous studies have denounced this situation. There is an ur-
gent need to update the classic criteria. The incorporation of the most suit-
able criteria will improve the quality of our research. In this work we review 
the classic criteria and, depending on the case, we also propose current cri-
teria to replace or complement the former. Our objective is to offer the in-
terested applied researcher updated guidance on how to perform an Ex-
ploratory Item Factor Analysis, according to the “post-Little Jiffy” psy-
chometrics. This review and the guide with the corresponding recommen-
dations have been articulated in four large blocks: 1) the data type and the 
matrix of association, 2) the method of factor estimation, 3) the number of 
factors to be retained, and 4) the method of rotation and allocation of 
items. An abridged version of the complete guide is provided at the end of 
the article.  
Key words: AFE; PCA; matrix of association; factors‟ estimation;  number 
of factors; factors‟ rotation. 

 

  Introduction 
 
Exploratory Item Factor Analysis (EFA) is one of the most 
commonly applied techniques in studies related to test de-
velopment and validation, as it is the technique par excel-
lence used in exploring the set of latent variables or com-
mon factors that explain the answers to the items of a test. 
If there is a query about material published in scientific 
journals, regarding this type of analysis two clearly separated 
tendencies are found. Firstly, the most numerous, where the 
technique is applied to identify the structure underlying test 
items. This is an instrumental use of the analysis technique. 
The other, less numerous, where we study and compare the 
different criteria usually applied in carrying out EFA, with 
new or not so new but less popular criteria. These studies 
investigate the most appropriate decisions, according to the 
conditions where the technique is applied. In this case, the 
decision regarding the technique itself is the object of study. 
This attention is deserved as the phases the factor analysis 
passes through require the application of decision criteria 
that, like most things, have improved over time. Despite 
these changes, traditional criteria, some quite outdated, still 
coexist today alongside the most modern ones, and that is 
where the maze metaphor comes in: the researcher, some-
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times taken aback by the amount of possibilities or in other 
cases being unaware of new possibilities, carries on, trusting 
their own and others‟ experience or a combination of both, 
but unsure of having found the main exit or the service exit. 

The paradox in this context is as follows: methodologists 
seek and find better criteria for applying EFA, while unani-
mously warning that the classics are often inadequate and 
dangerous. This opens new and better ways out of the maze, 
and states that some paths are misleading. On the other 
hand, the researchers who make instrumental use of the 
EFA are seemingly unaware that the new paths are better 
and that the old ones are dangerous, so they continue 
through the maze, oblivious to the signs indicating where to 
go.  

In our view, there is a clear failure in communication, or 
signaling as regards the maze. Maximum diffusion must be 
given to these new criteria, as nowadays it is known when 
and why they work better than the previous ones. On the 
other hand, we must also demand that they be applied in 
current research, as we know they perform better than the 
classic versions. As pointed out earlier, not just any path 
leads out of the maze. 

The aim of this study is to contribute to the dissemina-
tion and application of these new criteria or standards (and 
some not so new, which are apparently systematically ig-
nored).This will be done in three ways: first, by offering a 
revision and update of the classic standards, and by present-
ing those that replace them. Second, by reviewing and sum-
marizing the extent to which a variety of software available 
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on the market - SPSS, FACTOR (Lorenzo-Seva & Ferrando, 
2006, 2012b, 2013), LISREL (Jöreskog & Sörbom, 2007), 
and MPlus (Muthén & Muthén, 2007) - allows or limits the 
application of these new standards. And third, by using that 
software to analyze the factor structure of three sets of 
scales-D-48 (Anstey, 1959. Adapted to Spanish by the R & 
D Department of TEA Editions, 1996), Self-esteem and 
Self-concept, and Strength and Flexibility (Marsh, Richards, 
Johnson, Roche, & Tremayne, 1994), using real data for 
each set with the particularity that the scale data fits inade-
quately, moderately or satisfactorily, respectively,-to the as-
sumptions of the classic EFA model.  These three practical 
cases with real data will allow us to compare the conse-
quences of choosing a type of sotfware, as well as the con-
sequences of choosing a specific option from a number of 
available choices within the same software, when the data 
are challenging. Our goal is clear: to illustrate how the ap-
propriate or inadequate application of EFA can lead to very 
different conclusions.  

This goal is not new, in the last two decades at least 6 
different studies reviewing the use of EFA in empirical re-
search in Psychology have highlighted the limitations charac-
terizing the empirical studies published. These are summa-
rized below. 

Ford, MacCallum, and Tait (1986) reviewed articles pub-
lished in three journals (Journal of Applied Psychology, Personnel 
Psychology, Organizational Behavior and Human Performance) in the 
period between 1975 and 1984 reviewing a total of 152 stud-
ies; Ford et al. (1986) concluded that the application of EFA 
in the reviewed studies was deficient. Almost 10 years later, 
Hinkin (1995) reviewed the use of EFA in the development 
of 277 scales. These appeared in 75 articles published in rel-
evant academic journals from 1989 to 1994, and came to the 
same conclusion. Fabrigar, Wegener, MacCallum, and Stra-
han (1999) reviewed 217 articles published in two psycholo-
gy journals (Journal of Personality and Social Psychology, Journal of 
Applied Psychology) in the period 1991-1995. In this paper, a 
similar conclusion to Ford et al. (1986) was reached, alt-
hough there was a tendency was to follow some newer rec-
ommendations. More recently, Conway and Huffcutt (2003) 
conducted a review of the use of EFA in the same three or-
ganizational psychology journals reviewed by Ford et al. 
(1986) (Journal of Applied Psychology, Personnel Psychology, Organi-
zational Behavior and Human Performance) in the period 1985-
1999 (a total of 371 studies were reviewed). Conway and 
Huffcut (2003) again confirmed as light tendency to use 
more modern criteria; although this was still uncommon. Fi-
nally, Henson and Roberts (2006) reviewed 60 articles pub-
lished in four journals (Educational and Psychological Measure-
ment, Journal of Educational Psychology, Personality and Individual 
Differences, and Psychological Assessment) published until 1999. 
Their conclusion was that the application of EFA in the re-
viewed studies showed a pattern of common errors to be 
avoided. 

Izquierdo, Olea, and Abad (2013) recently presented a 
paper analyzing the use of EFA in 2011 and 2012 in the 

three Spanish journals with the greatest impact factor in the 
last 5 years: International Journal of Health and Clinical Psychology, 
Psicothema, and Spanish Journal of Psychology. Their conclusions 
were similar to the previous: high rates of incorrect or unjus-
tified decisions. 

We will now analyze erroneous decisions in detail, usual-
ly based on classic or outdated criteria or standards, and 
what other recommendations or guidelines can be used in-
stead. 
 

Determination of adequacy of the Exploratory 
Factor Analysis 
 
When we speak about tests in Psychology we often refer to 
latent variables or traits causing responses to in that test. 
The aim of the test is to evaluate to what extent a person is 
characterized by a particular trait or latent variable, known as 
extraversion, "g" factor, or stress, based on the observed re-
sponses to a particular and well-chosen set of items - ob-
served variables. (If the test is multidimensional, we then 
have multiple traits or latent variables). The EFA, Principal 
Component Analysis (PCA) and Confirmatory Factor Anal-
ysis (CFA) are techniques used for this purpose. However, 
they are not interchangeable. When should we choose ei-
ther? Let us see in detail. 
  

When do we apply Factor Analysis and when Prin-
cipal Components?  

 
The key lies in the exact aim of the analysis. If it is to 

identify the number and composition of the common fac-
tors (latent variables) needed to explain the common vari-
ance of the analyzed set of items, then applying EFA is ap-
propriate. In this case the algebraic representation of the 
model for m ≤ p common factors has as equation: 
 
X1=v1(1) F(1) + v1(2) F(2)+………+v1(m) F(m)+ e1 
X2=v2(1) F(1) + v2(2) F(2)+………+v2(m) F(m)+ e2 

: 
Xp = vp (1) F (1) + vp (2) F (2) + ... + vp (m) F (m) + ep 
 
where Xj, Fi, and ej refer to a person's score in item Xj, the com-
mon factor Fj, and the specific factor ej, m: number of common 
factors, p: number of items, F: common factor, vj(i) Weight for the 
nth common factor associated with the ith observed variable or item, 
i = 1, 2, .., m; j = 1, 2, ..., p; ej: uniqueness; r, j = 1, 2, ..., p. 

 
On the other hand, if the aim is to identify the number 

and composition of components needed to summarize the 
scores obtained on a large set of observed variables, then 
applying PCA is appropriate .This method explains the max-
imum percentage of variance observed in each item from a 
lower number of components summarizing this information. 
In this case, the algebraic representation of the model for m 
≤ p major components has as equation: 
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PC1 = w(1)1 X1+ w(1)2 X2+ … + w(1)pXp 
PC2 = w(2)1 X1+ w(2)2 X2+ … + w(2)pXp 
.. 
PCm= w (m) 1 X1 + w (m) 2 X2 + ......... + w (m) pXp 
 
where Xj and PCj refer to the person‟s score in item Xj, and the 
component PCi, m: number of principal components, p: number of 
items or observed variables, x: items or observed variables, PC: 
main components, wj(i) weight chosen for the observed variable jth 
to maximize the ratio of the CP variance (i) to the total variance, 
i=1, 2,.., m; j= 1, 2,…, p.  

 
The differences between the first option (EFA) and the 

second (PCA) are clear. The observed variables (items) are 
the independent variables in PCA, but dependent on EFA. 
At conceptual (and formal) level this difference is substan-
tial. However, for numerous reasons there has been a great 
amount of confusion over the decades, so that one tech-
nique, PCA, has been systematically applied to achieve the 
aim of the other, EFA. We will see the reasons why. 

Firstly, both techniques often appear together as data re-
duction techniques in the most common statistical packages. 
This makes them appear interchangeable; but they are actu-
ally quite different. The PCA is consistent with the concep-
tualization of formative measures, where indicators are 
thought to be the cause of a possible construct (Bollen & 
Lennox, 1991; Borsboom, Mellenbergh, & van Heerden, 
2003; Joliffe, 2002), although the model itself makes no ex-
plicit reference to latent variables. In fact, components are 
neither "latent" variables, nor are items any indirect "meas-
ure" of them. The components are "composites" of the ob-
served variables that fulfill the mission of reproducing the 
maximum variance of each observed variable with the min-
imum number of composites. The focus is, therefore, on the 
diagonal of the matrix, in the variances of the observed vari-
ables. The condition that the components are not correlated 
with each other is part of the procedure in achieving this 
aim.  

The EFA assumes that the observed variables are indica-
tors of a number of common latent factors or variables. If 
we analyze a set of items chosen to measure a single factor, 
each observed variable or item analyzed is carefully selected 
to reflect some feature of the factor to be measured along 
with it. The essential idea is that people with different levels 
in the common factor will provide different answers to that 
item, precisely because the factor provokes different re-
sponses (the item is a manifestation of that factor). The in-
dependent variable is the factor which produces different 
answers in items. The items are the dependent variables in 
this design. In other words, under EFA the measures are as-
sumed to be "reflective" or manifestations of the underlying 
constructs (Bollen & Lennox, 1991; Edwards, 2011; Har-
man, 1976; Kim & Mueller, 1978). Furthermore, however 
careful the selection of items, they cannot be perfect indica-
tors of the corresponding common factor. A part of the 
item´s variability will be directly produced by the factor 

measured by the item, but another part will not. Under the 
classical model or classical test theory, we can estimate the 
part of the variance of each item explained by the common 
factor underlying that set of items, precisely from the com-
mon variance shared between that item and the rest of items 
that measure that same factor (this part of the variance of 
the item is called communality). The remaining variance of 
the item is non-common variance (uniqueness) which does 
not contribute to the measurement of the common factors, 
and therefore is not included in the process of identification 
and estimation of those factors. Herein lies the second great 
difference between EFA and PCA: the inclusion of an error 
term (e). This error term does not exist in the PCA. The 
PCA does not distinguish between common variance and 
non-common variance (see Joliffe, 2002, Chapter 7, for a de-
tailed and accessible treatment of similarities and differences 
between both models for data reduction). 

Finally, it should be pointed out that the common fac-
tors are not aimed at explaining the maximum amount of 
variance of each item (as with components), only the common 
variance of each item with the rest, and that common variance is 
no longer in the elements of the diagonal matrix, but in the el-
ements outside the diagonal, which are expressed in terms of covariance 
or correlations. These are the elements that the researcher will try to ex-
plain. 
 

What is the classic recommendation? 
 

Clearly, when we analyze the items of a test seeking its 
corresponding factor structure we are in the second of the 
above scenarios, i.e. under the model of factor analysis. 
However, for some decades, the computational difficulty of 
the procedures aimed toward the estimation of common fac-
tors (CF) characteristic of EFA far exceeded that of the 
identification of principal components (PCA)  to the point 
where it would not be possible to obtain a solution by means 
of EFAs (or the solution would be inadequate, with Hey-
wood cases, i.e., items with commonalities of 1 or even 
greater, or non-positive definite matrices). The use of PCA 
as a method of finding an initial solution identifying the 
number of dimensions needed to explain the set of items did 
have these problems, and that solution could be rotated in 
search of the most adequate (orthogonal or oblique) struc-
ture, in the same way as an initial solution obtained by a CF 
procedure would have been rotated. Therefore, the PCA be-
came the simplest and most effective method of estimating 
/ extracting the underlying "factors" (actually components). 
Some studies suggested it was reasonable to apply PCA in 
the context of factor estimation when 1) the number of 
items per factor was high, and 2) the items contained little 
measurement error, since in these particular conditions the 
solution obtained by either procedure was virtually equiva-
lent (Thompson, 2004; Velicer & Jackson, 1990). Thus, the 
idea of equivalence between both techniques spread. Once 
this equivalence was shown for a set of very particular con-
ditions, researchers began intensively using PCA as a way of 
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extracting "factors" in the context of EFA, regard less of 
whether these particular conditions were given or not . 
There were few alternatives, so the tacit agreement to use 
PCA as if it were a CF analysis technique became universal 
and therefore the classic recommendation. 
 

What is the current recommendation? 
 
The computational efficiency of PCA compared to EFA 

does not exist anymore. There are new factor estimation op-
tions (such as the ULS factorization method that we will see 
later in the paper)   enabling us to apply EFA in conditions 
once previously impossible. So the use of PCA to estimate 
factors in the context of EFA no longer makes sense. In 
contrast, there are empirical and simulation studies strongly 
discouraging the use of PCA as if it were EFA, as both types 
of analyses can lead to quite different solutions (Ferrando & 
Anguiano-Carrasco, 2010; Gorsuch, 1997a; Vigil-Colet et al. 
2009). 

When applied in situations where a factor model is more 
adequate, the use of PC as a factor estimation method 
means ignoring the measurement error, which spuriously in-
creases factor loadings and variance percentages explained 
by factors, and can produce an overestimation of the dimen-
sionality of the set of items (see Abad, Olea, Ponsoda, & 
García, 2011, Ferrando & Anguiano-Carrasco, 2010, Gor-
such, 1997a). This occurs when seeking components that 
explain the total variance (common variance plus error vari-
ance, jointly considered) instead of only accounting for 
commonality. Either way, the interpretation of the solution 
obtained through PCA could be erroneous. 
 

Why is PCA still in use? 
 
The message has not been received by everyone and 

there is also a trend toward ambiguity: factor analysis pro-
grams include the PCA method among their options of fac-
tor estimation methods, and even as the default option (and 
therefore as reference). Unfortunately this trend has not di-
minished.   

Ford et al. (1986) covered the period 1975-1984 finding 
that 42% of the reviewed studies used PCA, 34% EFA, and 
the rest did not report the model used. Hinkin (1995) ana-
lyzed the period 1989-1994 and found that 33% of the re-
viewed studies used PCA, whereas (only 20% used the EFA 
model in any variant). Fabrigar et al. (1999) found that this 
percentage increased to 48%. 

 Conway and Huffcutt (2003) recently performed a re-
view of the use of EFA in the same three organizational 
psychology journals reviewed by Ford et al. (1986) and re-
ported that this model remained the most common, in 
39.6% of cases. Finally Henson and Roberts (2006) offered a 
greater percentage of PCA use in their study: 56.7%. In 
Spain, Izquierdo et al (2013) presented the same trend as 
Henson and Roberts. These results clearly reveal that it must 
be stressed that EFA must be applied if the aim is to analyze 

correspondence between a series of items and the set of fac-
tors to measure those items. 
 

When do we apply Exploratory Factor Analysis and 
when Confirmatory? 
 
EFA does not allow the researcher to define which items 

measure which factors, nor the pattern of relationships as-
sumed between the factors themselves, apart from whether 
they are all related to each other or not. It is called explora-
tory as we can only determine the number of factors we ex-
pect, but neither the composition nor specific pattern of re-
lationships among factors. In contrast, the CFA is character-
ized by allowing the researcher to define how many factors 
are expected, which factors are related to each other, and 
which items are related to each factor. 
 

What is the classic recommendation? 
 
The classic recommendation (e.g., Mulaik, 1972), which 

is still valid (e.g., Matsunaga, 2010), differentiates between 
exploratory factor analysis (EFA) and confirmatory factor 
analysis (CFA) depending on its aim. From this perspective, 
both methods are used to evaluate the factor structure un-
derlying a correlation matrix, but whereas EFA is used to 
“build” the theory, CFA is used to "confirm" it. Thus EFA 
is used when the researcher knows little about the variable 
or construct of interest and this approach helps to identify 
the latent factors underlying the manifest variables, in addi-
tion to the patterns of relations between latent and manifest 
variables. On the other hand, when we have a clear idea 
about the variables under study, the use of CFA allows test-
ing the hypothesized structure and checking if the hypothe-
sized model adequately fits the data. 

 
What is the current recommendation? 
 
There are currently two trends. The first, derived directly 

from the classic approach, recommends making sequential 
use of both types of analysis, as long as the sample size al-
lows it. This means randomly dividing the sample into two 
subsamples and exploring the factor structure underlying the 
items in the first sample (with an exploratory factor analysis), 
then trying to confirm that structure in the other half of the 
sample, by means of a confirmatory factor analysis (Ander-
son & Gerbing, 1988; Brown, 2006). 

From the second trend, the distinction between EFA 
and CFA is questioned regarding its (exploratory / confirm-
atory) purpose, indicating that such differentiation is unclear 
and brings a series of problems (e.g., Ferrando & Anguiano-
Carrasco; 2010). To begin with, it is easy to understand that 
most psychometric applications of factor analysis are some-
where between the total absence of information on the vari-
ables under study and the clear definition of their factor 
structure. For this reason, Ferrando & Anguiano-Carrasco 
(2010) proposed establishing the differentiation between 
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both approaches, not according to their aim, but in the re-
strictions imposed. Thus instead of considering EFA and 
CFA as two qualitatively distinct categories, they should be 
considered as two ends of a continuum. Thus, EFA (non-
restrictive) imposes minimum restrictions to obtaining an in-
itial factor solution, which can be transformed by applying 
different rotation criteria. And the CFA (restrictive) imposes 
much stronger constraints that allow a single solution to be 
tested, the fit of which can be evaluated using different 
goodness of fit indices (Hu & Bentler, 1999; Marsh, Hau, & 
Wen, 2004). 

Continuing with this second trend, various authors have 
shown that CFA fails to confirm factor structures clearly 
supported by corresponding exploratory analyses as it is too 
restrictive(e.g. Ferrando & Anguiano-Carrasco, 2010; Fer-
rando & Lorenzo-Seva, 2000;  Marsh et al., 2009, 2010; 
Marsh, Liem, Martin, Morin, & Nagengast, 2011; Marsh, 
Morin, Parker, & Kaur, 2014). In the CFA model, some hy-
potheses posit that some item factor loadings are zero (spe-
cifically the loadings on the factors items do not intend to 
measure). In many cases this restriction is not realistic, espe-
cially if factors are correlated. This problem has been thor-
oughly discussed by Ferrando & Lorenzo-Seva (2000), and 
as the authors indicate causes an accumulation of specifica-
tion errors. Most items analyzed do not act as markers in 
practice (i.e., they are not factorially simple), and therefore, 
they present smaller, but nonzero, cross-loadings on the 
other factors that they do not intend to measure. When the-
se crossloadings are forced to be zero, as in CFA, the good-
ness-of-fit of the model deteriorates, as the residuals accu-
mulate with each specification error. Bad-of-fit is greater the 
longer the test (more errors accumulated) and the larger the 
sample (the greater the power). 

To solve this problem, the current recommendation pre-
sents different alternatives. One is ESEM (Exploratory 
Structural Equation Modeling), representing a hybrid be-
tween EFA and CFA. ESEM is a semi-confirmatory alterna-
tive, since it is midway between both analyses strategies in 
the restriction continuum indicated above, integrating the 
advantages of both approaches. 

The ESEM (e.g., Marsh et al., 2011; Morin, Marsh, & 
Nagengast, 2013) is a similar approach to CFA, but item fac-
tor loadings on factors different from those the items intend 
to measure (or crossloadings) are not fixed to zero. Thus, it 
is less restrictive than CFA, and fits better to the reality of 
the measures used in Psychology (where items are not nor-
mally perfect "markers" or "indicators" of the construct they 
measure, but it is common for the items to be factorially 
complex and have lower but not zero weights in the other 
factors). Therefore, the ESEM obtains better fit than the 
CFA. We may say that this approach moves away from the 
"simple structure" proposed by Thurstone (1947) for easy 
interpretation of EFA, which has long been the norm, and is 
closer to the current trend proposing models that approach 
well enough to reality, but without trying to reproduce it, as 
this is either impossible, or implausible. 

Another alternative option, initially made by Mulaik 
(1972) is to specify a directly interpretable solution using one 
or two markers per factor. This alternative has also been re-
cently considered by McDonald (1999, 2000, 2005) in the 
"independent-cluster basis" (ICB) solution. The ICB con-
cept refers to the factor solution of a multidimensional test, 
where each factor is defined by a small number of factorially 
simple items (markers). Specifically, the requirement is there 
are at least 3 markers per factor if - factors are not correlated 
and at least 2 markers per factor if factors are correlated 
(McDonald, 1999). In a semi-restricted solution, the remain-
ing items may be factorially complex. As indicated by Fer-
rando & Lorenzo-Seva (2013), compliance with the ICB 
condition is enough to identify a solution without rotational 
indeterminacies, a disadvantageous regarding interpretation. 
Finally, another alternative is to use a semi-specified or Pro-
crustean rotation to a target factor pattern matrix which can 
be applied with the FACTOR program. A practical applica-
tion of this alternative can be consulted in the work of Fer-
rando, Varea, and Lorenzo (1999). 

There is therefore no universal recommendation as to 
when to apply EFA or CFA. However, regardless of wheth-
er either (or a sequence of both) is chosen, researchers must 
adequately justify their choice.  

 

Matters related to design: selection of items, 
sample size and composition, and number of 
items per factor 

 
As with any research, the utility and generalizability of -
results obtained with EFA will depend on the adequacy of 
the research design, i.e. on the selection of the variables to 
be measured- the sampling procedure used, and the sample 
size- among other decisions. Empirical studies tend to ne-
glect this phase of the research (Ferrando & Anguiano-
Carrasco, 2010). We will now look at each of these aspects 
in detail.  

 
  Sample size and composition 

 
How to select the most appropriate items to build the test 
 
One of the first issues to be decided is the subset of 

items that will configure the initial version of the test. If the 
subset omits relevant aspects of the latent variable to be 
measured, there will be less common variance than required 
in corresponding analysis and resulting common factors will 
be weaker for being insufficiently defined. On the contrary, 
if irrelevant items are introduced, additional common factors 
may appear or it will be difficult for the intended common 
factors being measured to emerge. Therefore adequate 
choice of items plays a decisive role in the clarity of the iden-
tified factor structure. 
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Classic recommendation 
 
The classic recommendation in the selection of items is 

to clearly and thoroughly define the construct to be meas-
ured and, from that definition, select items covering all the 
relevant aspects of the definition. From the classical view-
point this refers to content validity. Using some empirical 
criteria when selecting items is also advisable, such as the 
corrected homogeneity index (item-total correlation without 
the item analyzed) and the alpha coefficient if the item is 
eliminated from the scale (or subscale, depending on wheth-
er the test is one-dimensional or made up of various sub-
scales). 

 
Current recommendation 
 
The classic recommendations are still in use today. What 

is new is that additional recommendations have been incor-
porated that further refine the process of item selection. The 
accumulated experience reveals the importance of both sub-
stantive and methodological considerations, summarized be-
low: 
 
A) The use and abuse of redundant items may spoil the re-
sulting factor structure. Redundant items expressing the 
same idea with slightly different wording have been tradi-
tionally used to evaluate the consistency of people‟s re-
sponses, but also to raise the internal consistency of the 
scales (Ferrando & Anguiano-Carrasco, 2010). The problem 
arises because these redundant items naturally share more 
variance than is directly explained by the common factor. 
These pairs or triples of redundant items also share part of 
the unique variance. And when this occurs, additional com-
mon factors emerge, which seem difficult to identify and ex-
plain, especially after rotating the initial solution. 
 
B) Also playing a key role are item response distributions 
and the number of item response options. If the Pearson 
correlation or covariance matrix is analyzed (because the 
program used does not allow otherwise), the items must be 
continuous variables. Otherwise, as happens when the items 
to be analyzed are polytomous (e.g., Likert type), using items 
with at least five response alternatives and with approxi-
mately normal distributions allows us to adequately ap-
proach the assumption of continuity . Items with fewer re-
sponse categories or with non-normal distributions should 
be analyzed according to their ordinal nature, i.e. using the 
polychoric correlation matrix (for polytomous items, or the 
tetrachoric correlation matrix, in the case of dichotomous 
items) (Bandalos & Finney, 2010). We will return to this 
point later. 
 

How many items per factor should be included? 
 
Guadagnoli and Velicer (1988; MacCallum, Widaman, 

Preacher, and Hong, 2001; MacCallum, Widaman, Zhang, 

and Hong, 1999) showed that the number of items per fac-
tor interacts with the size of the commonalities of items and 
with the sample size. 

Common practice is to select at least three items per fac-
tor. However, this is counterproductive, as it compromises 
the stability of results (Velicer & Fava, 1998), especially 
when the sample size is below 150 (Costello & Osborne, 
2005). 

As a general rule, the more items accurately measuring a 
factor, the more determined the factor and the more stable 
the factor solution. The revised studies point to a minimum 
of 3 or 4 items per factor, only with a minimum of 200 cases 
(Fabrigar et al., 1999; Ferrando & Anguiano-Carrasco, 2010). 

 
Suitability of sample 
 
What minimum sample size is needed? What aspects of the sample 

composition should be considered? 
 
What sample is needed to make a solution stable and 

generalizable? This is a complex problem. The question of 
sample size and composition in EFA has been the subject of 
research for decades.   Convenience samples are commonly 
used (often university students), but there are two problems:  
lack of representativeness and attenuation and restriction of 
variance (Ferrando & Anguiano-Carrasco, 2010). Larger 
samples are obviously better than smaller, but the researcher 
cannot always access large sample sizes, which has led to a 
wide range of studies offering a large list of sometimes in-
correct recommendations about the minimum sample size in 
EFA (Guadagnoli & Velicer, 1988; Hogarty, Hines, 
Kromrey, Ferron, & Mumford, 2005). 

 
Classic recommendation 
 
Many of these recommendations on sample size have 

been the object of numerous empirical and simulation stud-
ies (Arrindell & van der Ende, 1985; MacCallum et al., 1999; 
Velicer & Fava, 1998), where two approaches are distin-
guished: 1) those suggesting a minimum size (N), and 2) 
those that defend a specific ratio of individuals per item 
(N/p).  

Some classic studies within the first approach (Barrett 
&Kline, 1981; Guadagnoli & Velicer, 1988) suggest a mini-
mum sample size (N), ranging from 50 to 400 subjects. 
Comrey and Lee (1992, p.217) suggested the adequacy of 
sample size could be assessed on the following scale: “50 - 
very poor; 100 -poor; 200-fair; 300-good; 500-very good, 
1000 or more–excellent.” So one of the classic recommenda-
tions par excellence is that a size of 200 cases or more (ex-
cept in clinical samples) is sufficient for most descriptive and 
psychometric analyses of items, if the test to be validated is 
quite short. Although reaching 500 or more cases is recom-
mended when possible (MacCallum et al., 1999).  

On the other hand, from the second approach, based on 
the person / item ratio (N/p), the most common recom-
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mendation is the "rule of 10": a sample 10 times greater than 
the number of items (Velicer & Fava, 1998), and the ratio of 
5: 1. In a classic work Gorsuch (1983) suggested a ratio of 5 
subjects per variable, and a size not fewer than 100 people. 

 
Current recommendation 
 
At present, different simulation studies reveal that sam-

ple size is a factor that interacts with other aspects of the de-
sign and the nature of the data, such as the matrix serving as 
input to the EFA, the number of items that define the fac-
tor, the homogeneity of the sample and, in particular, item 
commonalities (Beavers et al., 2013; Fabrigar et al., 1999; 
Ferrando & Anguiano-Carrasco, 2010). 

Regarding the input matrix, we distinguish between the 
product-moment correlation matrix and the polychoric cor-
relation matrix. The former is calculated directly on empiri-
cal data, while polychoric correlations are obtained from in-
direct estimators in an iterative way and are generally much 
more unstable. Therefore, an EFA based on the polychoric 
correlation matrix will require larger samples than one based 
on product-moment correlations in order to reach the same 
level of precision and stability, if the remaining conditions 
remain constant. 

Regarding other aspects mentioned above, recommenda-
tions are summarized as follows: 
1) Optimum condition: When factor loadings are greater 

than .70, and the number of variables per factor is ade-
quate - at least 6 items -, a sample size of 150 or 200 ca-
ses appears sufficient to obtain accurate estimates of the 
EFA coefficients (MacCallum et al., 1999, Preacher & 
MacCallum, 2003). There is even evidence that 100 cases 
will suffice 

2) When there are three factors with three or four items 
each, or when there are more items and factors but 
commonalities above .80 (Bandalos & Finney, 2010; 
Costello &Osborne, 2005; Guadagnoli & Velicer, 1988) 

3) Moderate condition: When commonalities are between 
.40 and .70, and the number of variables per factor is 3-4 
items, a size of 200 cases is also accepted, and finally, 

4) Minimum condition: When commonalities are low, a-
round .30, and the number of variables per factor is 3 i-
tems, a minimum sample of 400 cases is required 
(Conway & Huffcutt, 2003); Even 500 or more would be 
needed to obtain sufficiently accurate estimates (Hogarty 
et al., 2005). 
 
Nowadays, the classic N/p criteria and traditional "reci-

pes" such as 10 times more subjects than items, among oth-
ers, are completely discouraged, since they have no solid ba-
sis (Bandalos & Finney, 2010; Ferrando & Anguiano, 2010) . 
There is actually no obvious recipe, as the recommended 
minimum size depends on all factors listed. Logically, the 
larger the sample size the more we believe the solution ob-
tained is stable, especially if commonalities are low, or when 
there are many possible factors to extract and/or few items 

per factor. However, one thing seems clear: to evaluate the 
quality of a test, a sample size of at least 200 cases is rec-
ommended, even in optimal conditions of high commonali-
ties and well-determined factors (Ferrando & Anguiano-
Carrasco, 2010). 
 

Types of data and association matrices. Adequacy of 
data to Factor Analysis 

 
Classic FA has been developed on the assumption that 

the items are linearly related to the factors they measure, and 
that their relationships are also linear (there are variants of 
non-linear FA, but these are not the object of this work). If 
variables are continuous or close enough to this condition, 
Pearson's product-moment correlation matrix, or the vari-
ance-covariance matrix, will adequately summarize the rela-
tionships between the items (the former more frequent than 
the latter, especially in EFA, see Brown (2006), pp. 40-42). 
However, in Psychology it is common to use the Pearson 
correlation matrix or the variance-covariance matrix ob-
tained on ordinal items without determining if their distribu-
tions meet this assumption. Some programs do not allow the 
use of another type of matrix. 

 
Classic recommendation 
 
The classic recommendation is to use Pearson's correla-

tion matrix as input matrix. This type of correlation is ade-
quate in determining the linear relationship between two 
continuous variables that are preferably normally distributed. 
Items are not continuous variables, but ordinal and discret. 
However, when their distributions are approximately nor-
mal, Pearson's correlation coefficient is still a good method 
of estimating the two-item relationship. And when is that 
distribution roughly normal? In the case of dichotomous 
items when the difficulty indices are moderate and homoge-
neous (between .40 and .60). In other words when the items 
present intermediate difficulties, and consequently "symmet-
ric" distributions. The items with asymmetric distributions 
are especially problematic if they appear in both directions, 
as they give rise to nonlinear relations. This problem, typical 
of tests with very easy and very difficult items, is well docu-
mented and leads to what are called "difficulty factors", ex-
tra factors that appear due to the asymmetry of distributions 
of items (Embretson & Reise, 2000; Ferrando & Anguiano-
Carrasco, 2010; McDonald & Ahlawat, 1974). 

If the items are polytomous (Likert type), as we have al-
ready anticipated, the approximation to the ideal continuity 
condition is reasonably adequate when the number of re-
sponse options is 5 or above, and again the distribution of 
items is approximately normal. In this case, asymmetry 
would also be a problem since linear relationships between 
items measuring the same trait may be attenuated and even 
brings about non-linear relationships (see West, Finch, and 
Curran, 1995). Another factor to consider is item discrimina-
tion. The items with intermediate discrimination indices are 
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not a problem, but when discrimination indices are extreme, 
the Pearson correlation coefficient is not adequate. 

Nevertheless, these classic recommendations have been 
systematically ignored in key works focused on updating the 
decision criteria used in EFA (Conway &Huffcutt, 2003; 
Fabrigar et al., 1999; Henson & Roberts, 2006; Park, Dailey, 
& Lemus, 2002; Pérez & Medrano, 2010). These studies do 
not contemplate the type of items to be analyzed nor the 
type of matrix to be used. In these works, only the possibil-
ity of analyzing Pearson's matrix of product-moment corre-
lations has been considered, which, as we have seen is not 
always the best choice. This, together with the fact that 
SPSS, the most commonly used software, in its original con-
figuration does not provide the opportunity of analyzing an-
other type of matrix other than the product-moment corre-
lation matrix (or the variance-covariance matrix) which has 
led to the usual practice of calculating Pearson's product-
moment correlation matrix on ordinal, dichotomous or poly-
tomous items, without previously studying item distribution. 

 
Current recommendation 
 
At present, reviewing item distribution as a previous step 

in the analysis is still recommended, but  other types of as-
sociation matrices  can be used if convenient :polychoric(for 
polytomous items) or tetrachoric(for dichotomous items) 
(Bandalos & Finney, 2010; Brown, 2006; Ferrando & Angui-
ano-Carrasco, 2010). As on other occasions, the approxima-
tion to normality demanded by the polytomous variables is 
greater or lesser depending on the author. Some recommend 
distributions with skewness and kurtosis coefficients in the 
range of (-1, 1) (e.g., Ferrando & Anguiano-Carrasco, 2010; 
Muthén & Kaplan, 1985, 1992). Others however, consider as 
acceptable values in the range of (-1.5, 1.5) (Forero, Maydeu-
Olivares, & Gallardo-Pujol, 2009), or even the range (-2, 2) 
(Bandalos & Finney, 2010; Muthén & Kaplan, 1985, 1992). 
There is agreement that the negative impact of asymmetry 
interacts with other factors such as the sample size or the 
amount of items   defining each factor (Forero et al., 2009; 
West et al., 1995) so approximation to normality demand 
must grow as other conditions become more unfavorable. 

It is recalled here that an EFA based on the polychoric 
correlation matrix will require larger samples than EFA to 
reach the same degree of precision and stability based on 
Pearson's product-moment correlation matrix, therefore if 
the sample is small (200 subjects) and the distributions are 
adequate, factor analyzing Pearson's correlation matrix is 
recommended. When in doubt, we can clarify by performing 
and comparing the analysis of both matrices. 

Specific software allowing analysis of the most adequate 
correlation matrix are LISREL (Jöreskog & Sörbom, 2007) 
and MPlus (Muthén & Muthén 1998-2012). There is also 
specific and free software, such as FACTOR (Lorenzo-Seva 
& Ferrando, 2006) or the "Psych" package in R (Revelle, 
2014). In addition, SPSS users have TETRA-COM (Lo-
renzo-Seva & Ferrando, 2012a), a program for SPSS that es-

timates the tetrachoric correlation matrix. A routine devel-
oped by Basto and Pereira (2012) has recently appeared also 
allowing implementing polychoric correlation matrices in 
SPSS analysis. 

In any case it is also advisable to analyze the bivariate 
distributions of each pair of items, as recently mentioned by 
Pérez and Medrano (2010) to identify patterns of non-linear 
relationships between items. These patterns would violate 
the linear assumption of EFA and again add noise to the 
matrix analyzed and confusion to the factor structure identi-
fied. 

 
Adequacy of data to Factor Analysis 
 
Regardless of the matrix to be factor analyzed, its degree 

of adequacy to FA must be checked. One common way is 
through Kaiser Meyer Olkin's KMO Test for Sampling Ad-
equacy (Kaiser, 1970). This reflects the influence of all fac-
tors: size of correlations between items, sample size, number 
of factors and items. This measure of adequacy indicates the 
size of the correlations between the measured variables. If 
the correlations are sufficiently large, the matrix is adequate 
for its factorization as it will provide stable results, replicable 
in other samples, regardless of sample size, number of fac-
tors or items. If KMO is large enough, the results will not be 
fortuitous. Kaiser considered a matrix with KMO values be-
low .50 inadequate for FA; mediocre if KMO values ranged 
between .60 and .69; and satisfactory only for values of .80 
upwards. However, in our experience many authors have 
only collected the first of these values (.50), as a cut-off 
point (see Ferguson & Cox, 1993; Hair, Anderson, Tatham, 
& Black, 2005; Tabachnick & Fidell, 2001). Other authors 
prefer to increase the standard to .70 and even .80 (Costello 
& Osborne, 2005; Ferrando & Anguiano-Carrasco, 2010). 
The results of the empirical study presented in the second 
part of this paper support this value. 

 

What is the most appropriate factor estimation 
method? 
 
The recommended estimation methods are commonly Max-
imum Likelihood (ML) and Ordinary Least Squares (OLS), 
though the latter actually agglutinates a set of methods, no-
tably principal axes and unweighted least squares based on 
the same principle: to minimize the sum of squares of dif-
ferences between the correlations observed and those re-
produced by the model; i.e. to make residuals as close to 0 as 
possible (Ferrando & Anguiano-Carrasco, 2010). 
 

Maximum Likelihood: This method is inferential (Lawley 
& Maxwell, 1971). It is a factor estimation method providing 
the parameter estimates most likely to have produced the 
observed correlation matrix if the sample proceeds from a 
normal multivariate distribution with mlatent -factors. The 
correlations are weighted by the inverse of the uniqueness, 
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and an iterative algorithm is used for the estimation of pa-
rameters. This method has the advantage of allowing testing 
the goodness-of-fit of the model to the data, through an in-
dex that follows a chi-square distribution, and provides the 
standard error and significance tests around the estimated 
parameters. 

One disadvantage of ML is that it requires compliance 
with the multivariate normality assumption. Some authors, 
such as Finney and DiStefano (2006), recommend testing 
this assumption of multivariate normality - as does the 
FACTOR program (Lorenzo-Seva & Ferrando, 2006) and 
the Structural Equation Model (SEM programs). Yuan and 
Bentler (1998) are less strict, and suggested this assumption 
is unrealistic in psychology. There is abundant literature 
based on simulation studies showing that the ML method is 
robust in violating this assumption when variables have an 
approximately normal univariate distribution (e.g., Forero et 
al., 2009; Muthén & Kaplan, 1985, 1992; West et al., 1995). 
Another drawback is that the chi-square index is very sensi-
tive to sample size (Brown, 2006; Tabachnick & Fidell, 
2001). In addition, Ferrando and Anguiano-Carrasco (2010) 
remind that the chi-square test assumes that the proposed 
model with mfactors fits the population perfectly, therefore, 
that all error is sampling error, ignoring approximation error 
(the degree to which the model is a reasonable approxima-
tion to what occurs in the population, given the data seen in 
the sample). All this leads to the rejection of models that do 
represent a good approximation to the latent factor struc-
ture, in favor of models with more factors than those that 
have theoretical meaning, i.e. overfactorized models. Thus, 
in practice, other goodness-of-fit indicators derived from the 
chi-square test evaluating the approximation error and the 
degree of fit of the model, are usually considered. These will 
be seen in another section. 

Therefore 
A) The ML method and factor analyzing Pearson's 

Product-Moment Correlation matrix are recommended, if 
the items have sufficient response categories (5 or more), or 
are continuous (unlikely), and reasonably comply with the 
normality assumption , so that the linear relation assumed in 
bivariate relations between items can be observed (Flora, 
LaBrish & Chalmers, 2012). It is also recommended consid-
ering other goodness-of-fit indices derived from the chi-
square test that evaluate the approximation error and the 
degree of fit of the model to the data. 

B) Analyzing the polychoric correlation matrices by ML 
is not recommended. Although the parameter estimates are 
generally unbiased (Bollen, 1989), and even reproduce the 
measurement model better than the analysis of product-
moment correlations when some items do not meet the as-
sumption of normality (Holgado-Tello, Chacón-Moscoso, 
Barbero, & Vila-Abad, 2010) the goodness-of-fit tests based 
on chi-square, as well as the standard errors (and therefore 
the significance tests of the parameters involved) will be bi-
ased (Bollen, 1989; Satorra & Bentler, 1994), and, conse-
quently, interpretation of these should be avoided. When 

analyzing the polychoric correlation matrix, it is recom-
mended using OLS (e.g. Flora et al., 2012, Forero et al., 
2009; Lee, Zhang, & Edwards, 2012). 

 
Ordinary Least Squares: OLS methods gather a series of 

descriptive methods with the common denominator of de-
termining the factor solution making residuals as close to ze-
ro as possible. These methods have shown good results in 
the factorization of ordinal items when analyzing the poly-
choric correlation matrix (Forero et al., 2009; Lee et al., 
2012). 

Among these methods, Principal Axis has been the clas-
sic recommended option when the normality assumption is 
not met, which is more likely as the number of response cat-
egories is reduced (Fabrigar et al., 1999). This method can be 
applied in a non-iterative way, and the most common esti-
mates of commonalities are the squared multiple correla-
tions between each observed variable and the rest. These 
substitute the diagonal values of the correlation matrix, pro-
ducing what is called the reduced correlation matrix, the in-
put for the factor analysis. However, in most recent versions 
of programs, the principal axis method is applied iteratively 
by default. On estimating the initial commonalities, the re-
duced matrix is decomposed into its eigenvalues and eigen-
vectors; the latter are rescaled and form the first iteration 
factor matrix .From this initial factor matrix, the commonali-
ties are reestimated, replacing the initial ones. 

This iterative process continues until all differences be-
tween the commonalities of two successive iterations are so 
small that the convergence criterion or a maximum number 
of iterations are reached. The aim is to obtain the best pos-
sible commonality estimates based on the number of factors 
retained. The adequacy of the principal axis method depends 
on the quality of the estimates of communalities. When ap-
plied iteratively, principal axis shows more similar results to 
those provided by other methods such as the Unweighted 
Least Squares (ULS) method (Joreskög, 1977) (compared to 
the non-iterative approach). Rather than using the reduced 
matrix as input, with the communalities estimated on the di-
agonal, ULS minimizes the sum of the squares of the differ-
ences between the observed and reproduced correlation ma-
trices. This method is the most popular today (see Flora et 
al., 2012), as it performs well with small samples even when 
the number of variables is high, especially if the number of 
factors to retain is small (Jung, 2013). It also prevents the 
occurrence of Heywood cases (factor loadings greater than 
unity and negative error variances), which are more common 
with other estimation methods. It should be noted that ULS 
is virtually interchangeable with the Minimum Residual 
(Minres) Method (Harman & Jones, 1966; Joreskög, 1977). 
Depending on the software used, we will have either estima-
tion method available. 

Ferrando and Anguiano-Carrasco (2010) stated that "in a 
situation where (a) variables have acceptable distributions, 
(b) the solution is well determined, and (c) the proposed 
model is reasonably correct, both OLS and ML solutions 
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will be almost identical. In this case, ML has the advantage 
of offering additional useful indicators in the assessment of 
fit.” (p. 28) Otherwise, there will be convergence problems; 
unacceptable estimates and unreliable indicators. In these 
cases the authors recommend using OLS. It should be add-
ed that though some robust estimation methods have been 
suggested for violation of the multivariate normality assump-
tion (e.g., Weighted Least Squares (WLS), Robust Weighted 
Least Squares (WLSMV), or Robust Maximum Likelihood), 
these have been applied more in confirmatory than explora-
tory models. Programs such as Mplus do have some of these 
methods implemented for both CFA and EFA. These ro-
bust methods (the choice of a specific method depends on 
sample size) are the most recommended in structural equa-
tion models in general, and in CFA, in particular, when ana-
lyzing ordinal data that depart from the norm (e.g., Curran, 
West, & Finch, 1996; Flora & Curran, 2004). However, with 
EFA, we must still perform simulation studies that allow 
comparing the advantages of these robust methods to others 
such as ULS (beyond the possibility of offering goodness of 
fit indices) or even ML, when the data follow a distribution 
that departs from the norm. There is also a case for Bayesian 
estimates (Muthén & Asparouhov, 2012). 

 
How to select the proper number of factors 

 
This is perhaps the most important aspect of an EFA. The 
number of common factors required to explain the relation-
ships between items, and the composition of these factors, 
are the two central issues in the interpretability of the factor 
structure obtained in the analysis. If fewer factors than 
needed are retained, the resulting factor loading patterns are 
harder to interpret, and the identified factors are confusing. 
If more factors than needed are retained, latent variables are 
"fabricated" with little theoretical or substantive meaning. 
The decision is important, and perhaps why it is one of the 
aspects where more options have been provided to make the 
choice. We shall see. 

 
Classic recommendation 
 
The classic recommendation is to use the Kaiser rule: we 

will select factors with eigenvalues greater than 1, extracted 
from the original correlation matrix (and not the reduced 
matrix, i.e. the matrix with the commonalities in the diago-
nal). The Kaiser rule has been routinely used in the package 
known as "Little Jiffy" which includes the application of 
PCA with the Kaiser rule and the Varimax rotation method. 
This was suggested by Kaiser in 1957 as a computationally 
efficient alternative to the most appropriate but computa-
tionally less efficient options based on EFA and oblique ro-
tations. There have been many changes since 1957 for us to 
continue using the same procedures. Nevertheless, studies 
reviewing the way EFA has been applied in research from 
1975 to now, showed how this criterion is the most used, ei-

ther alone or in combination with another (Conway & Huff-
cutt, 2003; Fabrigar et al. 1999; Henson & Roberts, 2006; 
Park et al., 2002; Pérez & Medrano, 2010) both when using 
PCA and EFA. Fortunately, recent studies show that the 
frequency with which this rule is used as the sole criterion is 
wavering toward an increase in cases used in combination 
with other criteria (Conway & Huttcuff, 2003; Henson & 
Roberts, 2006). 

The most frequently combined criterion with the Kaiser 
rule is the Scree test (Cattell, 1966). This  is used with EFA, 
but actually what is analyzed as in the case of the Kaiser rule 
is normally the original correlation matrix, not the reduced 
one (Ford et al., 1986). 

The other classical criteria less often used in combination 
with the Kaiser rule are: 1) the solution offering the best 
possible interpretation, and 2) the number of factors based a 
priori on theory (Conway &Huffcutt, 2003; Fabrigar et al., 
1999; Ford et al., 1986). 

 
Current recommendation 
 
Although Kaiser's rule is the most inadvisable of all pos-

sible options, it is still the most widely used (Costello & Os-
borne, 2005). For example, Lorenzo-Seva, Timmerman, and 
Kiers (2011) excluded this criterion from their simulation 
study as it was clearly inappropriate. In this regard, Ferrando 
and Anguiano-Carrasco (2010) stated that one of the main 
drawbacks of this procedure is that the number of factors it 
identifies is directly related to the number of items analyzed; 
if n variables are analyzed, the number of factors that this 
rule obtains will oscillate between n/5 and n/3, regardless if 
the scale is unidimensional. Similarly, Lorenzo-Seva et al. 
(2011) excluded the Scree test, because the subjectivity for 
its application is difficult to program, so it cannot be intro-
duced in a simulation study in the same way they performed. 
However, Fabrigar et al. (1999) supported its use when the 
underlying common factors are clearly defined.  

It is strongly recommended that the decision on the 
number of factors be made with the following in mind: 1) 
several objective criteria, and always considering 2) the in-
terpretability of the solution obtained, and 3) the theoretical 
background (Lorenzo-Seva et al., 2011). 

The available objective criteria vary greatly depending on 
which software is used, and to a lesser degree on the factor 
estimation method. 

Parallel Analysis (PA) selects common components or 
factors that present eigenvalues greater than those obtained 
randomly (Horn, 1965).  If the analyzed matrix came from a 
population where items were not related, what eigenvalues 
could reach the common factors extracted from that matrix? 
And how many common factors obtained on the actual ana-
lyzed matrix exceed these "spurious" eigenvalues? The an-
swer provides the correct number of common factors. This 
technique was developed to be used on the original correla-
tion matrix (such as the Kaiser rule or the Scree test) and 
not on the reduced correlation matrix. However, its use has 
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also been recommended in identifying the number of com-
mon factors (Hayton, Allen, & Scarpello, 2004; Lorenzo-
Seva et al., 2011; Peres-Neto, Jackson, & Sommers, 2005; 
Velicer, Eaton, & Fava, 2000). 

Despite being recommended in numerous studies, this 
criterion is rarely used. This is explained by the accessibility 
of the procedure, since it is not implemented in the SPSS di-
rectory (the most commonly used program by researchers in 
social sciences). Fortunately, there is already a routine in R 
that allows applying PA and other criteria to identify the 
number of factors in the context of the SPSS program (Ba-
sto & Pereira, 2012), programs for SPSS and SAS that de-
termine the number of components through PA and Vel-
licer´s MAP (O'Connor, 2000), and a program specifically 
designed for PA on the Internet: ViSta-PARAN (Ledesma & 
Valero-Mora, 2007). FACTOR (Lorenzo-Seva & Ferrando, 
2006) is freely distributed and also implements the latest ad-
vances in this and other aspects. 

Three currently recommended criteria start from a dif-
ferent logic to PA. All are based on the evaluation of residu-
al correlations. If the appropriate number of common fac-
tors has been extracted, ideally no common variance should 
remain and so the residual correlations will tend to zero. 
These criteria are: 1) direct inspection of the distribution of 
the standardized residuals (median and extreme values, 
which will indicate where among variables the problem lies); 
2) the root mean square residual (RMSR) and 3) the gamma 
index or GFI (Tanaka & Huba, 1989). These latter two 
emerged in the context of a more general framework: SEM. 

The RMSR is a descriptive statistic that condenses the 
information contained in the residual correlation matrix. It is 
a measure of the average magnitude of the residual correla-
tions. Commonly, Harman‟s (1980) proposal of a cut off 
point of .05 has been used to consider an acceptable fit. Lo-
renzo-Seva and Ferrando (2006) instead recommended the 
criterion initially proposed by Kelley (1935); Kelley used the 
standard error of a correlation of zero as the reference value 
in the population from which the data originated, approxi-
mately 1/√N (see Ferrando & Anguiano-Carrasco, 2010). 
The RMSR can be used with any factor estimation method, 
though it is not implemented in generalist software such as 
SPSS. 

The GFI is a normed measure of goodness of fit ranging 
from 0 to 1 and can be used with most factor estimation 
methods, although it is uncommon in generalist programs 
such as SPSS. It indicates the proportion of covariation be-
tween items explained by the proposed model, and is there-
fore a species of multivariate coefficient of determination. 
Values above .95 are indicators of good fit (McDonald, 
1999). 

The RMSEA (Steiger & Lind, 1980) is an index based on 
the chi-square statistic, so can only be obtained with factor 
estimation procedures which offered it, which depends on 
the software used (e.g. FACTOR includes it for ULS and 
ML, but is not available in generalist programs like SPSS, 
although it can be calculated by the user). We find recom-

mendations for it in works by Browne and Cudeck (1993), 
Fabrigar et al. (1999), Ferrando and Anguiano-Carrasco 
(2010), and Lorenzo-Seva et al. (2011). This index estimates 
the approximation error of the proposed model. It is an in-
dex relative to the degrees of freedom of the model. Thus, it 
can favor the selection of more complex models. Values be-
low .05 are considered excellent, while those above .08 indi-
cate insufficient fit. 

Finally, another criterion applied in the context of the 
PCA which has been generalized to the EFA, is the Mini-
mum Average Partial (MAP) Test (Velicer, 1976). This pro-
cedure focuses on identifying the amount of components 
providing the minimum partial correlation between the re-
sulting residuals. Zwick and Velicer (1986) indicated that this 
procedure was adequate in identifying the number of com-
ponents. It has also been applied in the identification of the 
number of common factors. This criterion is applied in the 
R command that allows improving the SPSS features for 
EFA (Basto & Pereira, 2012), in the program developed by 
O'Connor (2000), and also in the program FACTOR (Lo-
renzo-Seva & Ferrando, 2006). 

As for the interpretability of the solution, it is essential 
evaluating what the objective indicators suggest. It is little 
use that a model with two factors fits better than another 
with 3, if the third factor is poorly defined (with fewer than 
3 items with factor loadings greater than .30, for example), 
or cannot be interpreted due to a lack of meaningful con-
tent. We must highlight the trend over the last decades (Fab-
rigar et al., 1999, Lorenzo-Seva et al., 2011) to distinguish 
between common major and minor factors. The former 
must be retained as they explain a substantive part of the 
items comprising the scale. The minor common factors also 
explain a part of the common variance, but only a small part, 
which does not become interpretable in the context of what 
we wish to measure with that set of items. The example of 
Lorenzo-Seva et al. (2011) is clear: if two items measuring 
different personality traits have as a common denominator 
where the person is situated. Perhaps this common part 
produces a certain covariance among individuals´ responses, 
and that a minor common factor emerges to explain this co-
variance .That common factor will have circumstantial 
meaning but not substantive meaning. Consequently, the 
current recommendation is not to explain the greatest 
amount of common variance as possible, but most of the 
common variance possible to explain with the proper num-
ber of common factors, which will be those factors that 
have meaning. This is as some readers may have surmised 
the eternal dilemma between parsimony and plausibility.  

One criterion not recommended is interpretation of ex-
plained variance, as it is not a satisfactory indicator of the 
adequacy of the number of identified common factors. The 
common item variance cannot be distributed among the var-
ious common factors (except under an estimation method: 
Minimum Rank Factor Analysis). If so, some eigenvalues 
would be negative, as otherwise the sum of the common 
variance explained by each factor may exceed the total 
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common variance, precisely because it is common, and has 
been accounted for in the common part of the variance of 
different items. A more detailed explanation can be found in 
Lorenzo-Seva (2013). Bandalos and Finney (2010) can also 
be consulted. 

In summary, it is recommended using a mix of objective 
criteria and criteria based on the theory and interpretability 
of the solution, and use this combination to compare alter-
native solutions. It would be ideal to present the most plau-
sible and parsimonious combination. It should be remem-
bered that the program used for analysis, along with the fac-
tor estimation method, will greatly limit the specific type of 
objective criteria used. It is advisable to abandon those pro-
grams that do not allow use of the best methods, unless a 
macro is known that solves this problem. The Kaiser rule 
which is the most used criteria in all the reviewed studies is 
discouraged; and we recommend incorporating procedures 
based on: 1) the PA, 2) the MAP method or 3) the RMSEA 
goodness-of-fit index, if possible. Beyond these, no further 
universal recommendations can be made. 

The interested reader can find more detailed information 
about these and other methods and their functioning in a 
simulation study carried out by Lorenzo-Seva et al. (2011). 
 

What kind of factor rotation and what criteria 
for item assignment must be employed? 
 
Following the factor estimation phase, the solution is rotated 
to achieve the greatest simplicity and interpretability. 
 

Classic recommendation 
 
Thurstone (1947) suggested that factors be rotated in a 

multidimensional space to obtain the solution with the best 
simple structure. The factor rotation can be orthogonal or 
oblique. The former method assumes independence of fac-
tors; while the latter allows correlation between factors. 

The use of either type of rotation has practical implica-
tions when presenting the EFA results. The contribution of 
a particular item to a given factor is indicated both with fac-
tor pattern coefficients and factor structure coefficients. The 
former are found in the pattern matrix and the latter in the 
structure matrix. In EFA, the structure matrix provides cor-
relations between observed variables (items) and latent vari-
ables (factors). When orthogonal rotation is used, since it is 
assumed that the factors are uncorrelated; the structure ma-
trix and the pattern matrix are exactly the same, therefore it 
is enough to provide the pattern coefficient matrix. Howev-
er, when oblique rotation is used, the factor correlation ma-
trix is not an identity one, so the structure and the configura-
tion matrices will not offer the same coefficients. In oblique 
rotation, both matrices must be provided, and the interpre-
tation of results must be done by first considering the struc-
ture matrix coefficients, and then examining the pattern ma-
trix coefficients (Courville &Thompson, 2001; Henson & 

Roberts, 2006; Gorsuch, 1983; Thompson & Borrello, 
1985). 

The most widely known rotation criteria available in 
most commercial statistical analysis programs are: Varimax 
(Kaiser, 1958) for orthogonal rotation, and direct Oblimin 
(Clarkson & Jennrich, 1988) and Promax (Hendrickson 
&White, 1964) for oblique rotation. Varimax has been sug-
gested as an orthogonal rotation criterion when there is no 
dominant factor, whereas Quartimax has been proposed as 
an alternative orthogonal criterion when a single general fac-
tor is expected (Carroll, 1953). Equamax combines both cri-
teria (single factor / several factors) and offers intermediate 
solutions. Weighted versions of the Varimax criterion have 
also been formulated (e.g., Cureton & Mulaik, 1975) 

In oblique rotation, the most popular criterion has been 
direct Oblimin. The Quartimin criterion (Jennrich & 
Sampson, 1966) is equivalent to the Quartimax criterion, but 
in oblique rotation. Other criteria have recently been pro-
posed, some quite new to the usual EFA users, such as Ge-
omin (Yates, 1987), Promin (Lorenzo-Seva, 1999) and 
weighted Oblimin (Lorenzo-Seva, 2000). For a detailed 
presentation of different rotation criteria we recommend 
Browne (2001), and Sass and Schmitt (2010). 

Although different rotation criteria have traditionally 
been formulated under a certain method (orthogonal or 
oblique), more recent software developments show that the 
same criterion may be available using both orthogonal and 
oblique methods (e.g., Mplus, Muthén & Muthén, 1998-
2012). 

Historically, researchers have selected the rotation crite-
rion for use in EFA depending on the popularity of a specif-
ic criterion at the time (e.g., Varimax, an integral part of the 
"Little Jiffy pack"), or depending on the recommendation 
for using orthogonal rotation when factors are independent, 
and oblique rotation when factors are related. 

 
Current recommendation 
 
Over the last twenty years, studies reviewing the use of 

EFA have shown an evolution from major use of orthogo-
nal rotation (specifically the Varimax criterion), to more 
common use of oblique rotation. Ford et al. (1986) conclud-
ed that, in the reviewed studies, orthogonal rotation was 
mostly applied. Specifically, Ford et al. (1986) found that 
about 80% of the reviewed EFAs used orthogonal rotation, 
while 12% either used oblique rotation or did not rotate the 
factor solution (the remaining 8% provided no information 
). Included in this study are those who use oblique and who 
do not rotate the solution; in the same category; thus we 
conclude that the percentage of analysis using oblique rota-
tion was less than 12%. 

Fabrigar et al. (1999) came to a similar conclusion as 
Ford et al. (1986), but with an increasing trend toward 
oblique rotation. Results indicated that 48.3% of EFAs eval-
uated used orthogonal rotation (particularly Varimax), and 
20.6% oblique rotation. 
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 Conway and Huffcutt (2003) recently reconfirmed the 
decreasing trend of orthogonal rotation. The percentage of 
EFAs analyzed using this rotation had dropped to 41.2%. 
However, the increase in the percentage of use of oblique 
rotation could not be confirmed. Their study found it was 
used in only 18% of cases. Contrary to expectation, this re-
sult indicated a slight decrease in oblique rotation. Conway 
and Huffcutt (2003) explained this by referring to the per-
centage of works not indicating the rotation used. In fact, in 
their study, this percentage was 18%, while in the study by 
Fabrigar et al. (1999) it was only 8%. 

This evolution in the use of rotation criteria is because 
orthogonal rotation is traditionally thought to produce sim-
pler and more easily interpretable structures (e.g., Nunnally, 
1978). However, different studies (Fabrigar et al., 1999; 
Finch, 2006; Henson & Roberts, 2006; Matsunaga, 2010; 
Park et al., 2002; Preacher & MacCallum 2003) show this 
not to be so, but that indeed oblique rotation can present 
clearer, simpler and more interpretable structures. 

These studies suggested using oblique rotation regardless 
of the underlying theoretical model (independent or related 
factors). There are several arguments for this: 1) almost all 
phenomena studied in the social and health sciences are 
roughly interrelated, so it is difficult to find perfect orthogo-
nal solutions. It follows that imposing an orthogonal factor 
solution could be unrealistic; 2) If the construct under study 
really presents a structure of independent factors, this or-
thogonality will be reflected in the results (by allowing corre-
lations between factors using an oblique approximation, the 
obtained correlations will be low); 3) Finally, if correlations 
between factors were consistently low (below .30 or .20), it is 
suggested repeating the analysis using an orthogonal solu-
tion. If both solutions were similar, considering the criterion 
of parsimony; it would be advisable to provisionally accept 
the orthogonal solution (Ferrando & Anguiano-Carrasco, 
2010). 

The recommendation is to start by applying oblique rota-
tion criteria. But from those formulated, which is best? Per-
haps this question is unanswerable. It has recently been re-
ported that the number of possible factor structures hypoth-
esized is very broad and so the rotation criteria applied in 
each particular case will be different (e.g., Browne, 2001). In 
this line, the work of Sass and Schmitt (2010) tried to com-
pare different rotation criteria in different situations (e.g., 
perfect simple structure, approximate simple structure, 
complex structure, general structure) and provide guidelines 
for performing an EFA. To that end, these authors per-
formed a simulation study with Mplus where they evaluated 
different oblique rotation criteria (Quartimin, CF-Equamax, 
CF-Facparsim and Geomin) and their ability to reproduce 
different factor pattern matrices. Sass and Schmitt (2010) 
concluded there is no definitive answer to what rotation cri-
terion produces the "best" solution. Apparently, there are no 
correct or incorrect rotation criteria, nor any that produce 
better or worse solutions. In contrast, one must be aware 
that selecting ne rotation criterion or another can have im-

portant effects on estimated factor pattern loadings and be-
tween-factor correlations. The different rotation criteria, un-
der certain circumstances, can lead to very similar factor pat-
tern matrices; but under other circumstances may produce 
different and even contradictory ones. It is in these situa-
tions that the researcher must make the difficult decision to 
choose the most appropriate rotation criterion, i.e., that 
providing the simplest and most informative solution (As-
parouhov & Muthén, 2009). Ultimately, „the selection of 
"best” rotation criterion must be made by the researcher" 
(Sass & Schmitt, 2010, p. 99). This suggestion was already 
made by Browne (2001, p. 145): "the choice of the best solution 
therefore cannot be made automatically and without human judgment". 
The researcher can test different factor solutions using dif-
ferent rotation criteria, and based on results, select the 
"best" rotation criterion offering the simplest and most in-
formative factor solution. It is even advised, that as well as 
providing a justification of the chosen rotation criterion, the 
different "factor pattern matrices" from different rotation 
criteria” are offered, so "this allows the reader to draw their 
own conclusions based on the competing factor structures" 
(Sass & Schmitt, 2010, p. 97). 

Regarding the criterion of assigning items to factors, an-
other aspect that can hugely vary the interpretation of the 
solution obtained, common practice is to retain factor load-
ings above .30 or .40 (Bandalos & Finney, 2010; Guadagnoli 
& Velicer, 1988; McDonald, 1985). In fact, Tabachnick and 
Fidell (2001) stated that .32 could be a good general rule in 
the minimum loading to be considered, equivalent to ap-
proximately 10% of the explained variance. Other authors 
are slightly stricter and place the cutoff point at a minimum 
of .40 (MacCallum et al., 1999; Velicer & Fava, 1998; Wil-
liams, Brown, & Onsman, 2010) and also recommend rais-
ing this cutoff point if the sample is lower than 300 cases. It 
is also recommended that the discrepancy between factor 
loadings in the first two factors be .50/.20 or .60/.20 (i.e. a 
difference of .30-.40). Some studies, particularly empirical 
ones, use the .60/.40 discrepancy (Henson & Roberts, 2006; 
Park et al., 2002). 

Items that do not surpass the criterion or set of estab-
lished criteria must be revised in both their aspects: substan-
tive and methodological, to identify why they do not work 
well. We can then assess whether to remove them from the 
test, modify them somehow for inclusion in a new version 
of the test, or if new items of similar content must be added 
to adequately sample the content of the factor to be meas-
ured (Costello & Osborne, 2005), leading us to re-examine 
the aforementioned content validity (Bandalos & Finney, 
2010). In addition, after eliminating these items, a new factor 
analysis will be carried out with the reduced scale. Ideally the 
analysis would be repeated after eliminating one of the inap-
propriate items one by one (Bandalos & Finney, 2010). 
Small variations such as eliminating a pair of items can often 
substantially modify the final result of the analysis. 

As the reader may have already noticed, the aspects dis-
cussed so far are many and varied, and yet do not touch on 
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all that should be dealt with in the context of EFA. We have 
only tried to present those most relevant that the applied re-
searcher must solve when beginning work. We have omitted, 
among others, non-linear FA, on which there is extensive 
literature, the issue of factor scores, which can be consulted 
in the chapter on Exploratory Factor Analysis of Abad et al. 
(2011) and neither have we have provided recommendations 
on the use of item parcels, which can be consulted in West 
et al. (1995) and in a recent and extensive work by Little, 
Rhemtulla, Gibson and Schoemann (2013). And finally, we 
have not provided recommendations regarding when and 
how to use the originally entitled "Extension Analysis" 
(Gorsuch, 1997 a, b), for which the EXTENSION program 
exists, compatible with SPSS, SAS And MATLAB (O'Con-
nor, 2001). 

We refer interested readers to the sources cited for in-
formation on these aspects. We will now summarize all the 
above recommendations in a manner useful to the reader.  

 
Exploratory Factor Analysis of Items: Brief 
User Guide 
 
We have presented a lot of information thus far, and at this 
point the aim of offering clear and current recommendations 
may have blurred. Thus, in conclusion, the most important 
current recommendations will be summarized and integrated 
into a brief guide around four central aspects: 1) the type of 
data and the association matrix; 2) the factor estimation 
method; 3) the number of factors and finally, 4) rotation 
method and item allocation.  
 

1) Type of data and association matrix 
 
Recommendation 
 
The applied researcher intending to perform an EFA to 

evaluate the scale of interest should use appropriate sample 
sizes, be consistent with the ordinal, polytomous (Likert 
type) or dichotomous nature of the items to be analyzed, use 
appropriate software in each case, and check the adequacy 
of their data to the FA at least the KMO test. 

As a general rule, Pearson's correlation matrix is limited 
to the case where items are continuous, or if not, have five 
or more response alternatives and approximately normal dis-
tributions (a demanding criterion uses values for kurtosis 
and skewness in the range of -1 to 1). In most other cases it 
is recommended using the polychoric or tetrachoric correla-
tion matrix, depending on the case. 

The exception occurs if the sample is small (200 subjects 
or fewer). In this case, the polychoric correlations might not 
be very stable and so less recommendable than the Pearson 
correlations, therefore we suggest relaxing this requirement 
and using values for greater asymmetry and kurtosis (-2, 2). 
When in doubt, the researcher can compare the solutions 
obtained with both matrices and decide on the best solution. 

Sample size is not easy to anticipate, as it depends on the 
psychometric characteristics of items, of the type of associa-
tion matrix, and these two aspects are related. However, if 
we wish to have some guarantee of being able to use the 
polychoric / tetrachoric correlation matrices we should not 
use samples with fewer than 300 subjects. With the Pearson 
correlation matrix, a minimum sample of 200 cases is rec-
ommended, only valid as a starting point. Where factor load-
ings are low (less than .40) and the number of items per fac-
tor is also low (3 items) larger sample sizes are required as a 
guarantee of generalization of results. As it is customary to 
use convenience samples, two problems must be considered: 
non-representativeness and the attenuation and restriction of 
variance. 

The adequacy of the data to the FA is considered "suffi-
cient" when the KMO measurement takes values between 
.70-.79, and "satisfactory" with values greater than .80. 

 
2) Factor estimation method 
 
Recommendation 
 
The informed researcher must adapt the method to the 

type of data to be analyzed: if the items are ordinal but have 
approximately normal distributions, - in this case the criteri-
on is to accept absolute values below 2 for asymmetry and 
kurtosis, then the appropriate method is ML applied to the 
Pearson correlation matrix as this provides more infor-
mation (goodness-of-fit indices, significance tests and stand-
ard errors around the estimated parameters). 

Otherwise, it is recommended applying an OLS-based 
method such as ULS. This allows analyzing matrices in ad-
verse situations, even with few cases and many items, and 
without the need to make distributional assumptions. This 
method is also recommended when the ML solution is inad-
equate as it shows convergence problems or Heywood cases, 
or other similar anomalies. In these cases, we must carefully 
assess if these estimation problems are not masking data that 
do not actually fulfill required assumptions (such as normali-
ty or linearity) or a poorly specified model (Fabrigar et al., 
1999). 

PCA is the estimation method which is strongly discour-
aged, a method to explain the variance of each individual 
item. It is not a suitable method for reaching the aim of FA, 
which is to explain correlations among items from the iden-
tification of a set of common factors. It should not even be 
used with an oblique rotation of identified components. 

 
3) Number of factors to retain. 
 
Recommendation 
 
As regards the number of factors to retain, the Kaiser's 

criterion is also an option as strongly discouraged as the 
PCA estimation method. An informed researcher must em-
ploy a range of methods to decide: they must retain only 
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"major" common factors considering the number of items 
(minimum 3-4), the factor loading size (minimum .40), and 
the meaning of items that define them, and must apply at 
least one "extra" objective criterion in the margin of those 
offered by a conventional EFA - which are Scree test, GFI 
or RSMR -, or an EFA by means of SEM- we have men-
tioned RMSEA as a criterion, although there are others 
which can be used. When the proportion of items per factor 
is small, and the sample size is 200 cases or more, this "ex-
tra" objective criterion can be a Parallel Analysis or the MAP 
method. Bearing this information in mind the recommenda-
tion is as follows: 

1) to obtain results about the goodness-of-fit of the 
model with the number of factors fixed to the expected 
number, 

2) to obtain results about the goodness-of-fit of other 
models that may appear plausible following initial analysis, 
and 

3) to compare and decide. 
The use of the percentage of variance explained is 

strongly discouraged as a criterion, as it is confusing. 
 
4) Rotation method and item assignments 
 
Recommendation  
 
Oblique rotation is highly recommended, even when it 

may seem appropriate, as they obtained result will highlight. 
However, the same cannot be said for orthogonal rotations. 
What is unclear is the most appropriate oblique rotation 
method, since there are no clear criteria. The researcher 
must try several and choose which presents better interpret-
ability. 

As for the criterion for interpreting the factor loading of 
an item, the recommendation is also clear: never below .40, 
especially if the sample is fewer than 300 cases. 

Items not exceeding this value should be eliminated 
from the analysis and subjected to a substantive and meth-
odological examination to choose from three options: elimi-
nate or revise the item or add new ones sampling the facet 
related to that particular item. In any case, we should reex-
amine the adequacy of the test content to the construct to 
be measured. In addition, a new factor analysis with the re-
duced scale will be performed after eliminating one of these 
items each time. 

Let us stress that use of the "Little Jiffy" pack is discour-
aged: PCA plus Kaiser plus Varimax.  For some time it has 
been the most effective way of summarizing the observed 
relationships between test items. Even if under certain un-
likely assumptions it could provide adequate results; this is 
not the case today. 

 

Conclusion 

 
In an article by Martinez and Martinez (2009, p. 373) on the 
new conceptualizations of validity - and the difficulty with 
which they are taken up by the psychometric community -, 
conclude with the following example: "Jacob Cohen, one of 
the most influential researchers in methodology, has spent 
more than forty years defending the use of effect size indices 
rather than the classic "p-value," with incredibly logical ar-
guments" Cohen (1990) explains, in spite of everything. 
"The problem is that, in practice, current research hardly 
pays attention to the effect size" (Cohen, 1990, p. 1310). 
Sedlmeier and Gigernzer (1989) concur with this in their ar-
ticle "Do studies on statistical power have an effect on the 
power of studies?", that the power of published studies is, 
on average, insufficient .44. The use of statistical power may 
have increased in recent years, but it is not common practice 
to report it. If something as simple as the study of the effect 
size when interpreting analyses is still not routinely applied, 
despite the large number of studies showing its suitability, it 
is not surprising at what occurs in the more complex context 
of EFA. 

Borsboom, in his article "The Attack of the Psycometri-
cians" (2006), also concludes that psychometric advances 
seem not to have contributed much to the advance of psy-
chology in the last 50 years. And it is not for lack of advanc-
es in psychometrics but for lack of application of those ad-
vances in psychology. We believe that the key is, as Cohen 
(1990, p. 1309) puts it, "that the process by which one con-
ceives, plans, executes, and writes research must depend on 
the informed judgment of one's self as a scientist" (our italics). 

It is not a question of repeating what other researchers 
have done before; we cannot advance in this way. It is about 
being informed and having the judgment to take the best 
decisions. This is how we leave the maze, through the front 
door as we said at the beginning of this paper. And that 
should be the maxim of all those who work in the world of 
research: researchers, editors, reviewers and professors. This 
is our small contribution. 
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