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Título: Comparación de los procedimientos de Fleishman y Ramberg et al. 
para generar datos no normales en estudios de simulación. 
Resumen: Las técnicas de simulación deben posibilitar la generación ade-
cuada de las distribuciones más frecuentes en la realidad como son las dis-
tribuciones no normales. Entre los procedimientos para la generación de 
datos no normales destacan el método de transformaciones lineales pro-
puesto por Fleishman y el método basado en la generalización de la distri-
bución lambda de Tukey propuesto por Ramberg et al. Este estudio  com-
para los procedimientos en función del ajuste de las distribuciones genera-
das a sus respectivos modelos teóricos y del número de simulaciones nece-
sarias para dicho ajuste. Con este objetivo se seleccionan, junto con la dis-
tribución normal, una serie de distribuciones no normales frecuentes en da-
tos reales, y se analiza el ajuste según el grado de violación de la normalidad 
y del número de simulaciones realizadas. Los resultados muestran que am-
bos procedimientos de generación de datos tienen un comportamiento si-
milar. A medida que aumenta el grado de contaminación de la distribución 
teórica hay que aumentar el número de simulaciones a realizar para asegurar 
un mayor ajuste a la generada. Los dos procedimientos son más precisos 
para generar distribuciones normales y no normales a partir de 7000 simu-
laciones aunque cuando el grado de contaminación es severo (con valores 
de asimetría y curtosis de 2 y 6, respectivamente), se recomienda aumentar 
el número de simulaciones a 15000. 
Palabras clave: Simulación; Monte Carlo; generadores de datos; datos no 
normales; número de simulaciones. 

  Abstract: Simulation techniques must be able to generate the types of dis-
tributions most commonly encountered in real data, for example, non-
normal distributions. Two recognized procedures for generating non-
normal data are Fleishman’s linear transformation method and the method 
proposed by Ramberg et al. that is based on generalization of the Tukey 
lambda distribution. This study compares these procedures in terms of the 
extent to which the distributions they generate fit their respective theoreti-
cal models, and it also examines the number of simulations needed to 
achieve this fit. To this end, the paper considers, in addition to the normal 
distribution, a series of non-normal distributions that are commonly found 
in real data, and then analyses fit according to the extent to which normali-
ty is violated and the number of simulations performed. The results show 
that the two data generation procedures behave similarly. As the degree of 
contamination of the theoretical distribution increases, so does the number 
of simulations required to ensure a good fit to the generated data. The two 
procedures generate more accurate normal and non-normal distributions 
when at least 7000 simulations are performed, although when the degree of 
contamination is severe (with values of skewness and kurtosis of 2 and 6, 
respectively) it is advisable to perform 15000 simulations. 
Key words: Simulation; Monte Carlo; data generators; non-normal data; 
number of simulations. 

 

Introduction 
 
Monte Carlo simulation studies are widely used by research-
ers in the health and social sciences (Burton, Altman, 
Royston & Holder, 2006). One of the aims of these studies 
is to evaluate and compare the robustness of different statis-
tical procedures when the assumptions regarding the under-
lying distribution are not fulfilled. The parametric tests most 
commonly used in applied research (e.g. ANOVA) require 
that the assumption of normality be fulfilled, in other words, 
the dependent variable must be distributed according to the 
normal curve. However, the variables encountered in the 
field of health and social sciences often do not follow a 
normal distribution (Blanca, Arnau, Bono, López-Montiel & 
Bendayan, 2013; Limpert, Stahel & Abbt, 2001; Micceri, 
1989). Examples of such variables in the health sciences are 
survival times for certain types of cancer (Claret et al., 2009; 
Qazi, DuMez & Uckun, 2007) or the age at onset of Alz-
heimer’s disease (Horner, 1987), while in the social sciences 
it is the case of variables such as social support (Matud, Car-
balleira, Lopez, Marrero & Ibáñez, 2002), physical and ver-
bal aggression in couple relationships (Soler, Vinyak & 
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Quadagno, 2000), certain psychosocial aspects of addictions 
(Deluchi & Bostrom, 2004), post-traumatic stress (Sullivan 
& Holt, 2008), reaction times or response latency (Shang-
Wen & Ming-Hua, 2010; Ulrich & Miller, 1993; Van der 
Linden, 2006), certain attentional skills (Brown, Weatherholt 
& Burns, 2010) and variables of a psychophysiological na-
ture (Keselman, Wilcox & Lix, 2003).   

The first step in any Monte Carlo simulation study is to 
generate data that reflect the characteristics of the distribu-
tions that one wishes to simulate. Consequently, the quality 
of the results produced by such studies largely depends on 
the accuracy and suitability of the data generation procedure 
used (Niederreiter, 1992). The criteria used to evaluate this 
include how long the process takes (Afflerbach, 1990), its 
replicability (Ripley, 1990) and the degree to which the gen-
erated distribution fits the theoretical model (Bang, Shu-
macker & Schlieve, 1998), with this latter criterion being of 
particular interest for determining the accuracy of the pro-
cedure. In this context, it is especially important to evaluate 
the suitability of data generators for generating non-normal 
distributions, both known and unknown (Demirtas, 2007), 
as these types of distributions are commonly encountered in 
real data (Blanca et al., 2013; Limpert et al., 2001; Micceri, 
1989). 

There are many useful procedures for generating non-
normal data, although in the health and social sciences par-
ticular mention should be made of Fleishman’s linear trans-
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formation method (Fleishman, 1978) and the method pro-
posed by Ramberg, Dudewicz, Tadikamalla and Mykytka 
(1979) that is based on generalization of the Tukey lambda 
distribution.  

The procedure proposed by Fleishman (1978) uses a 
polynomial transformation to generate non-normal data. 
Specifically, it takes the sum of a linear combination of a 
random normal variable, its square and its cube, and for the 
univariate case it is defined as shown in (1),  
 

32 dXcXbXaY                 (1) 

 
where X is a normally distributed random variable with 

mean 0 and variance 1. This procedure calculates the coeffi-
cients a, b, c and d by means of a polynomial transformation 
involving different values of the third and fourth moments 
(i.e. skewness, γ1, and kurtosis, γ2). The first and second mo-
ments are arbitrarily set at 0 and 1, respectively.  

The procedure proposed by Ramberg et al. (1979) in-
volves a generalization of the Tukey lambda distribution, 
originally developed by Ramberg and Schmeiser (1972, 
1974) with the aim of generating random variables (Karian 
& Dudewicz, 2000). The inverse function of the generalized 
lambda distribution (GLD), which includes the original 
lambda distribution (λ4= λ2), is defined as shown in (2), 
 

 

(0 (2) 

 
where p is a uniform random variable (0,1) and x follows 

the GLD. Ramberg et al. (1979) explored how to determine 
the distribution parameters using the first four moments, 
and how to fit the resulting distribution. The skewness and 
kurtosis of the GLD are determined by λ3 and λ4, respective-
ly. Given these values, the variance is determined by λ2, 
whereas the mean can take any value (λ1). 

In recent research, controversy has arisen regarding 
which data generation procedure is the most suitable for 
generating accurate non-normal distributions. The Fleish-
man (1978) method is one of the most widely used in simu-
lation studies, and it has the advantage of being simple, 
quick and easily generalized to the generation of multivariate 
non-normal data, through the procedure described by Vale 
and Maurelli (1983). However, some authors have argued 
that the procedure proposed by Ramberg et al. (1979) is able 
to generate more extreme non-normal distributions, alt-
hough when it comes to non-extreme, non-normal distribu-
tions the two procedures offer an equivalent speed and ease 
of execution (Tadikamalla, 1980). Likewise, other studies 
have pointed out that the two procedures are similar and 
present the same limitations when generating non-normal 
distributions with extreme values of skewness and/or kurto-
sis (Headrick & Kowalchuk, 2007; Headrick, Sheng & 
Hodis, 2007).  

As noted above, the fit of the generated distribution to 
the theoretical model is a key criterion for determining the 
accuracy of a data generation procedure, and some studies 
have highlighted the importance of investigating how the 
number of simulations performed affects the quality of 
Monte Carlo studies in general (Harwell, Stone, Hsu & 
Kirisci, 1996; Díaz-Emparanza, 2002), and the fit of the 
generated distribution to the theoretical model in particular 
(Bang et al., 1998; Luo, 2011). Recent research has provided 
fairly consistent results in this regard, and it is generally ac-
cepted that more simulations means better quality (Burton et 
al., 2006; Diaz-Emparanza, 2002). In Monte Carlo studies 
the number of simulations is usually somewhere between 
100 and 100000 (Burton et al., 2006), most commonly 1000 
(e.g. Collier, Baker, Mandeville & Hayes, 1967; Kowalchuk, 
Keselman, Algina & Wolfinger, 2004), 5000 (e.g. Keselman, 
Othman, Wilcox & Fradette, 2004; Lix & Keselman, 1996) 
or 10000 (e.g. Livacic-Rojas, Vallejo & Fernández, 2006; Wil-
cox, 2004). However, very few studies have examined the ef-
fect of the number of simulations on the fit of the generated 
distribution to the theoretical model, and the results to date 
are inconclusive. For example, Kashyap, Butt and 
Bhattacharjee (2009) found that 5400 simulations were suffi-
cient for an adequate fit to the Bernoulli distribution, while 
Bang et al. (1998) reported that 10000 simulations were 
enough to generate data from the normal distribution. How-
ever, these studies did not consider the wide range of possi-
ble distributions or the number of simulations most com-
monly used in Monte Carlo simulation studies. More recent-
ly, Luo (2011) examined the accuracy of the Fleishman 
(1978) method and took into account a wide variety of non-
normal distributions with values of skewness between 0 and 
1.25 and kurtosis values between 1 and 4. This study only 
considered a maximum of 2000 simulations, and the results 
show that the procedure becomes less accurate as skewness 
increases, and also that this number of simulations is insuffi-
cient when the degree of contamination is severe. 

In light of the above, the aim of the present study was to 
compare the suitability of the data generation procedures 
proposed by Fleishman (1978) and Ramberg et al. (1979) in 
terms of the fit of the generated distribution to the corre-
sponding theoretical model, with both the number of simu-
lations and the degree of contamination of the distribution 
being modified. To this end, we selected a series of non-
normal distributions defined by the skewness and kurtosis 
values most commonly found in real data. These distribu-
tions were generated by means of the two abovementioned 
procedures and the number of simulations was varied. Each 
distribution was then compared with its respective theoreti-
cal distribution, and the degree of fit was calculated accord-
ing to the deviation in the skewness and kurtosis coeffi-
cients. 
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Method 
 
The data were generated using SAS/IML, which was chosen 
due to it being one of the most suitable software packages 
for simulating data (Kashyap et al., 2009). The study varia-
bles were: 

a. Degree of contamination of the distribution. The 
theoretical distributions selected were the normal distribu-
tion and a series of unknown non-normal distributions, de-
fined by the skewness and kurtosis values most commonly 
encountered in real health and social sciences data. Blanca et 
al. (2013) calculated the skewness and kurtosis coefficients in 
693 real data sets derived from measures of psychological 
variables and found, in line with other authors (Micceri, 
1989), that only a small percentage of distributions were 
normal. More specifically, they found that skewness values 
ranged between -2.49 and 2.33, while those for kurtosis were 
between -1.92 and 7.41. Considering skewness and kurtosis 
together, only 5.5% of distributions were close to expected 
values under normality; in terms of absolute values of skew-
ness and kurtosis 39.9% of values were between 0.26 and 
0.75, 34.5% were between 0.76 and 1.25, 10.4% were be-
tween 1.26 and 1.75, 2.6% were between 1.76 and 2.25, and 
7.1% were greater than 2.25. On the basis of these results we 
selected skewness and kurtosis coefficients that represented 

different degrees of contamination with respect to normali-
ty, from mild to severe. These values are shown in Table1.  
 
Table 1. Values of skewness and kurtosis used in the present study to de-
termine the degree of contamination of the distribution with respect to 
normality. 

Contamination Skewness Kurtosis 

No contamination: Normal dist. 0 0 
Mild 0.25 0.70 
Moderate 0.75 1 
High 1.30 2 
Severe 2 6 
 

b. Type of data generator. Data were generated by 
means of two procedures, the Fleishman (1978) method and 
that developed by Ramberg et al. (1979). In the former we 
used the coefficients a, b, c and d for the values of skewness 
and kurtosis that are shown in the table of Fleishman (1978). 
For those values that do not appear in this table the coeffi-
cients a, b, c and d were calculated by means of a polynomial 
transformation in SAS, using the syntax shown in Appendix 
I. In order to generate data by means of the procedure pro-
posed by Ramberg et al. (1979) we used lambda values (λ1, 
λ2, λ3 and λ4) for the different values of skewness and kurto-
sis shown in the tables of Karian and Dudewicz (2000). The 
values of the coefficients a, b, c and d and the lambda values 
are shown in Tables 2 and 3, respectively. 

 
Table 2. Values of Fleishman’s (1978) a, b, c and d coefficients for each value of skewness and kurtosis for the distributions generated in the present study. 

  a B C d 

γ1 γ2     

0 0 0 1 0 0 
0.25 0.70 -0.036810262 0.933410485 0.036810262 0.021290330 
0.75 1 -0.11906128313604 0.95591357125244 0.11906128313604 0.00983810049833 
1.30 2 -0.249125834 0.984295285 0.249125834 - 0.016426620 
2 6 -0.313749008 0.826323869 0.313749008 0.022706628 
Note. γ1:value of the skewness coefficient; γ2: value of the kurtosis coefficient. 
 
Table 3. Lambda values for each value of skewness and kurtosis for the distributions generated in the present study. 

  λ1 λ2 λ3 λ4 

γ1 γ2     

0 0 0 .1974 .1349 .1349 
0.25 0.70 -.1560 .07821 .03995 .05331 
0.75 1 -.5215 .09654 .03087 .08730 
1.30 2 -.9751 .09679 .007227 .1130 
2 6 -.9930 -.001081 -.000004072 -.001076 
Note. γ1:value of the skewness coefficient; γ2: value of the kurtosis coefficient; λ1, λ2, λ3 and λ4:lambda values. 
 

c. Number of simulations. Data were generated for the 
different theoretical distributions using between 1000 and 
15000 simulations (number of iterations), in steps of 1000. 
Subsequently, and so as to ensure that the statistical analysis 
was interpretable, the number of simulations was grouped 
into five categories: 1000-3000, 4000-6000, 7000-9000, 
10000-12000 and 13000-15000. 

In order to analyse the accuracy of the data generators 
used in the simulations we examined the fit of the generated 
distribution with respect to the theoretical model, calculating 

the differences in absolute values between the respective 
theoretical coefficients of skewness and kurtosis and those 
obtained in the generated distribution; these were labelled, 
respectively, the skewness deviation and the kurtosis devia-
tion. For both variables, values of 0 indicate a perfect fit be-
tween the theoretical and generated distributions. The coef-
ficients of skewness (3) and kurtosis (4) were calculated by 
means of SAS, which uses the following unbiased estima-
tors:  
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                         (3) 

 

    (4) 

 
where N is the number of observations, xi represents the 

i-th value of the variable, x   corresponds to the mean and 

Sx is the standard deviation.  
 
 

Results 
 
In order to analyse differences according to the type of data 
generator (Ramberg vs. Fleishman), the degree of contamina-
tion of the distribution (normal, mild, moderate, high and 
severe) and the number of simulations (1000-3000, 4000-
6000, 7000-9000, 10000-12000 and 13000-15000) we con-
ducted two 2 x 5 x 5 analyses of variance, with skewness de-
viation and kurtosis deviation as the dependent variable, re-
spectively. Each cell of the design contains three observa-
tions. Table 4 shows the results of the analysis.  

Table 4. Results of the 2 x 5 x 5 ANOVA, with the factors type of generator, degree of contamination and number of simulations, and the skewness devia-
tion and kurtosis deviation as the dependent variable. 

Study variables Deviation   Df F p η2
partial 

Generator Skewness 1, 100 0.03 .86 .001 
 Kurtosis 1, 100 2.56 .11 .03 
Contamination Skewness 4, 100 1.32 .27 .05 
 Kurtosis 4, 100 22.3 <.001 .47 
Simulations Skewness 4, 100 9.82 <.001 .28 
 Kurtosis 4, 100 9.10 <.001 .27 
Generator x Contamination Skewness 4, 100 0.06 .99 .003 
 Kurtosis 4, 100 0.29 .88 .01 
Generator x Simulations Skewness 4, 100 0.17 .95 .01 
 Kurtosis 4, 100 0.25 .91 .01 
Contamination x Simulations Skewness 16, 100 0.18 <.001 .03 
 Kurtosis 16, 100 2.04 .02 .25 
Generator  x Contamination  x Simulations Skewness 16, 100 0.23 .99 .04 
 Kurtosis 16, 100 0.41 .98 .06 

 

 
Figure 1. Mean kurtosis deviation as a function of the degree of contamina-

tion of the distribution 

 

The main effects show that there are no differences be-
tween the two data generators as regards the skewness de-
viation or kurtosis deviation. The total mean deviation for 
skewness was 0.04 (SD= 0.05), while that for kurtosis was 
0.20 (SD= 0.30). With respect to the degree of contamina-
tion there were differences in terms of the kurtosis deviation 
but not in the skewness deviation. Specifically, the kurtosis 
deviation increased in line with the degree of contamination, 
and was at its highest when the simulated distribution 
showed severe contamination (Figure 1). As regards the 
number of simulations, this was associated with differences 
in both skewness deviation and kurtosis deviation. In gen-
eral, both deviations decreased as the number of simulations 
increased, with lower deviations being produced above 7000 
simulations (Figures 2 and 3). 
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Figure 2. Mean skewness deviation as a function of the number of simulations. 

 

 
Figure 3. Mean kurtosis deviation as a function of the number of simulations. 

 
The interaction effects show that the two data generators 

produce a similar pattern as regards the skewness and kurto-
sis deviations and the number of simulations, there being no 
interaction between these factors. However, the kurtosis de-
viation as a function of the degree of contamination did vary 
according to the number of simulations (Figure 4). In gen-

eral, the kurtosis deviation is greater with 6000 simulations 
or fewer, and lower above 7000 simulations for all the distri-
butions. Note, however, that the greatest deviation occurs 
when simulating a distribution with severe contamination, 
especially when the number of simulations is less than 7000. 
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Figure 4. Mean kurtosis deviation as a function of the number of simulations and the degree of contamination. 

 

Discussion 
 
The main aim of this study was to compare two data genera-
tion procedures, the Fleishman (1978) method and that pro-
posed by Ramberg et al. (1979), as regards the fit of the gen-
erated distribution to the theoretical model, with both the 
number of simulations and the degree of contamination of 
the distribution being modified. In addition to the normal 
distribution we considered a series of distributions with dif-
ferent degrees of contamination, specifically those most fre-
quently encountered in health and social sciences research 
(Blanca et al., 2013). Fit was evaluated by calculating the dif-
ferences in absolute values between the respective theoreti-
cal coefficients of skewness and kurtosis and those obtained 
in the generated distribution. 

The results show that the data generation procedure 
proposed by Ramberg et al. (1979) is as accurate as the 
Fleishman (1978) method for both normal and non-normal 
distributions, a finding that is consistent with previous re-
search (Headrick et al., 2007; Headrick, Sheng et al., 2007). 
Both procedures also show less skewness deviation than 
kurtosis deviation when generating data. However, their ac-
curacy differs as a function of the number of simulations 
and the degree of contamination with respect to normality. 
In general, as the degree of contamination of the distribu-
tion increases, so does the number of simulations required 
to ensure a good fit. These results confirm the findings of 
previous research (Burton et al., 2006; Díaz-Emparanza, 
2002) which reported that increasing the number of simula-
tions improves the quality of a simulation study, and they are 
also consistent with the conclusions reached by Luo (2011). 
Luo (2011) found that when using the Fleishman (1978) 
method a higher number of simulations are required as the 
degree of skewness in the desired distribution increases.  

More specifically, one of the main conclusions to be 
drawn from the present study is that when deciding how 
many simulations are required to ensure accurate data gener-

ation it is necessary to take into account the values of skew-
ness and kurtosis that one wishes to simulate. On the one 
hand, both the data generators studied here are more accu-
rate when generating normal and non-normal distributions 
with over 7000 simulations, above which number the values 
of skewness and kurtosis deviation are close to zero. How-
ever, when the simulated distribution presents severe con-
tamination, defined by skewness of 2 and kurtosis of 6, both 
procedures become less accurate and yield higher values of 
kurtosis deviation. In these cases the lowest deviation is 
produced between 13000 and 15000 simulations, where the 
kurtosis deviation takes a value of 0.20. Although these re-
sults cannot be directly compared with other studies, as this 
is the first report to compare the procedures of Fleishman 
(1978) and Ramberg et al. (1979) in terms of the number of 
simulations required to generate non-normal data, our find-
ings are partially consistent with previous research stating 
that the quality of simulation studies can be increased by us-
ing 10000 simulations (Bang et al., 1998; Rasch & Guiard, 
2004; Robey & Barcikowski, 1992).  

In summary, the results show that the two data genera-
tion procedures behave similarly. However, as the degree of 
contamination of the theoretical distribution increases, so 
does the number of simulations required to ensure a good fit 
to the generated data. Future research should analyse the 
degree of fit with other types of known non-normal distribu-
tions that are widely used in Monte Carlo studies, for exam-
ple, the double exponential or lognormal. Similarly, it would 
be useful to consider distributions with different values of 
skewness and kurtosis, with one of these being set at zero. 
Finally, it would also be interesting to replicate the present 
study with multivariate data so as to analyse the accuracy of 
the multivariate extensions of these two procedures.  
 
Acknowledgements.- This study has been funded by Spain’s Min-
istry of Economy and Competitiveness, project PSI2012-32662. 

 



370                                                                  Rebecca Bendayan et. al. 

 

anales de psicología, 2014, vol. 30, nº 1 (enero) 

References 
 
Afflerbach, L. (1990). Criteria for the assessment of random number genera-

tors. Journal of Computational and Applied Mathematics, 31, 3-10. 
Bang, J. W., Schumacker, R. E. & Schlieve, P. L. (1998). Random-number 

generator validity in simulation studies: An investigation of normality. 
Educational and Psychological Measurement, 58(3), 430-450. 

Blanca, M. J., Arnau, J., Bono, R., López-Montiel, D., & Bendayan, R. 
(2013). Skewness and kurtosis in real data samples. Methodology. European 
Journal of Research Methods for the Behavioral and Social Sciences, 9(2), 78-84. 
doi:10.1027/1614-2241/a000057 

Brown, D. D., Weatherholt, T. N. & Burns, B. M. (2010). Attention skills 
and looking to television in children from low income families. Journal of 
Applied Developmental Psychology, 31, 330-338.  

Burton, A., Altman, D. G., Royston, P. & Holder, R. L. (2006). The design 
of simulation studies in medical statistics. Statistics in Medicine, 25, 4279-
4292. 

Claret, L., Girard, P., Hoff, P. M., Van Cutsem, E., Zuideveld, K. P., Jorga, 
K., Fagerberg, J. & Bruno, R. (2009). Model based-prediction of phase 
III overall survival in colorectal cancer on de basis of phase II tumour 
dynamics. Journal of Clinical Oncology, 27, 4103-4108.  

Collier, R. O., Baker, F. B., Mandeville, G. K. & Hayes, T. F. (1967). Esti-
mates of test size for several test procedures based on conventional var-
iance ratios in the repeated measures design. Psychometrika, 32, 339-353. 

Deluchi, K. L. & Bostrom, A. (2004) Methods for analysis of skewed data 
distribution in psychiatric clinical studies: Working with many zero val-
ues. American Journal of Psychiatry, 161, 1159-1168.  

Demirtas, H. (2007). Letter to the Editor: The design of simulation studies 
in medical statistics. Statistics in Medicine, 26, 3818-3821. 

Díaz- Emparanza, I. (2002). Is a small Monte Carlo analysis a good analysis? 
Checking the size, power and consistency of a simulation-based test. 
Statistical Papers, 43, 567-577. 

Fleishman, A. (1978). A method for simulating non-normal distributions. 
Psychometrika, 43(4), 521-531. 

Horner, R. D. (1987). Age at onset of Alzheimer’s disease: Clue to the rela-
tive importance of etiologic factors? American Journal of Epidemiology, 126, 
409-414. 

Karian, Z. A. & Dudewicz, E. J. (2000). Fitting statistical distributions. The gener-
alized lambda distribution and generalized bootstrap methods. Boca Raton, FL: 
Chapman and Hall/CRC. 

Kashyap, M. P., Butt, N. S. & Bhattacharjee, D. (2009). Simulation study to 
compare the random data generation from Bernoulli distribution in 
popular statistical packages.Pakistan Journal of Statistics and Operation Re-
search, 5 (2), 99-106. 

Keselman, H.J., Othman, A. R., Wilcox, R. R. & Fradette, K. (2004). The 
new and improved two-sample t test. Psychological Science, 15 (1), 47-51. 

Keselman, H. J., Wilcox, R. R. & Lix, L. M. (2003). A generally robust ap-
proach to hypothesis testing in independent and correlated group de-
signs. Psychophysiology, 40(4), 586-596.  

Kowalchuk, R. K., Keselman, H. J., Algina, J. &Wolfinger, R. D. (2004). The 
analysis of repeated measurements with mixed-model adjusted F tests. 
Educational and Psychological Measurement, 64(2), 224-242. 

Harwell, M. R., Stone, C. A., Hsu, T. C. & Kirisci, L. (1996). Monte Carlo 
studies in item response theory. Applied Psychological Measurement, 20, 
101-125. 

Headrick, T. C. & Kowalchuk, R. K. (2007). The Power Method Transfor-
mation: Its Probability Density Function, Distribution Function, and Its 
Further Use for Fitting Data. Journal of Statistical Computation and Simula-
tion, 77, 229–249. 

Headrick, T. C., Sheng, Y. & Hodis, F. (2007). Numerical computing and 
graphics for the power method transformation using Mathematica. 
Journal of Statistical Software, 19(3), 1-17. 

Limpert, E., Stahel, W. A. & Abbt, M. (2001).Log-normal distributions 
across the sciences: keys and clues. BioScience, 51, 341-352.  

Livacic-Rojas, P., Vallejo, G. & Fernández, P. (2006). Procedimientos esta-
dísticos alternativos para evaluar la robustez mediante diseños de medi-
das repetidas. Revista Latinoamericana de Psicología, 38 (3), 579-598. 

Lix, L. M & Keselman, H. J. (1996). Interaction contrasts in repeated 
measures designs. British Journal of Mathematical and Statistical Psychology, 
49, 147-162. 

Luo, H. (2011). Generation of non-normal data: A study of Fleishman´s Power Meth-
od. Working paper published by the Department of Statistics of Uppsala 
University (Sweden). Retrieved from 
hhtp://urn.kb.se/resolve)urn:nbn:se:uu:diva-150623. 

Niederreiter, H. (1992). Random number generation and quasi-Monte Carlo methods. 
Philadelphia: SIAM. 

Matud, P., Carballeira, M., Lopez, M., Marrero, R. & Ibáñez, I. (2002). Apo-
yo social y salud: un análisis de género. Salud Mental, 25(2), 32-37. 

Micceri, T. (1989). The unicorn, the normal curve, and other improbable 
creatures. Psychological Bulletin, 105, 156-166. 

Qazi, S., DuMez, D. & Uckun, F. M. (2007). Meta-analysis of advanced can-
cer survival data using log-normal parametric fitting: A statistical meth-
od to identify effective treatment protocols. Current Pharmaceutical Design, 
13, 1533-1544.  

Ramberg, J. S., Dudewicz, E. J., Tadikamalla, P. R., & Mykytka, E. F. (1979). 
A probability distribution and its uses in fitting data. Technometrics, 21(2), 
201-214. 

Ramberg, J. S. & Schmeiser, B. W. (1972).An approximate method for gen-
erating symmetric random variables. Communications of the ACM, 15(11), 
987-990. 

Ramberg, J. S. & Schmeiser, B. W. (1974). An approximate method for gen-
erating asymmetric random variables. Communications of the ACM, 17 (2), 
78-82. 

Rasch, D. & Guiard, V. (2004). The robustness of parametric statistical 
methods. Psychology Science, 46, 175-208. 

Ripley, B. D. (1990). Thoughts on pseudorandom number generators. Jour-
nal of Computational and Applied Mathematics, 31, 153-163. 

Robey, R. R. & Barcikowski, R. S. (1992).Type I error and the number of it-
erations in Monte Carlo studies of robustness. British Journal of Mathemat-
ical and Statistical Psychology, 45, 283–288.  

Shang-wen., Y. & Ming-Hua, H. (2010). Estimation of air traffic longitudinal 
conflict probability based on the reaction time of controllers. Safety Sci-
ence, 48, 926-930.  

Soler, H., Vinayak, P. & Quadagno, D. (2000). Biosocial aspects of domestic 
violence.Psychoneuroendocrinology, 25¸721-739.  

Sullivan, T. P. & Holt, L. J. (2008). PTSD symptom clusters are differentially 
related to substance use among community women exposed to intimate 
partner violence. Journal of Traumatic Stress, 21 (2), 173-180.  

Tadikamalla, P. (1980). On simulating non-normal distributions. Psy-
chometrika, 45(2), 273-279.  

Ulrich, R. & Miller, J. (1993). Information processing models generating 
lognormally distributed reaction times. Journal of Mathematical Psychology, 
37, 513-525.  

Vale, C. D. & Maurelli, V.A. (1983). Simulating multivariate non normal dis-
tributions. Psychometrika, 48, 3, 465-471. 

Van der Linden, W. J. (2006). A log-normal model for response times on 
test items. Journal of Educational and Behavioral Statistics, 31, 181-204.  

Wilcox, R. R. (2004). An extension of Stein’s two-stage method to pairwise 
comparisons among dependent groups based on trimmed means. Se-
quentialAnalysis, 23 (1), 63-74. 

 
 (Article received: 10-09-2011; reviewed: 16-11-2012; accepted: 16-02-2013) 

 
 

http://10.0.4.3/1614-2241/a000057


Comparison of the procedures of Fleishman and Ramberg et al. for generating non-normal data in simulation studies                                                             371 

 

anales de psicología, 2014, vol. 30, nº 1 (enero) 

Appendix I 
Syntax used to calculate the coefficients a, b, c and d when generating data by means of the Fleishman 
(1978) procedure. 
 
 
*/ CALCULATION FLEISHMAN COEFFICIENTS 
START FUN; 
X1=COEF[1]; 
X2=COEF[2]; 
X3=COEF[3]; 
F=(X1**2+6*X1*X3+2*X2**2+15*X3**2-1)// 
(2*X2*(X1**2+24*X1*X3+105*X3**2+2)-SKEWNESS)// 
(24*(X1*X3+X2**2*(1+X1**2+28*X1*X3)+X3**2* 
    (12+48*X1*X3+141*X2**2+225*X3**2))-KURTOSIS); 
FINISH FUN; 
START DERIV; 
J=((2*X1+6*X3)||(4*X2)||(6*X1+30*X3))// 
((4*X2*(X1+12*X3))||(2*(X1**2+24*X1*X3+105*X3**2+2)) 
||(4*X2*(12*X1+105*X3)))// 
((24*(X3+X2**2*(2*X1+28*X3)+48*X3**3))|| 
(48*X2*(1+X1**2+28*X1*X3+141**X3**2))|| 
(24*(X1+28*X1*X2**2+2*X3*(12+48*X1*X3+141*X2**2+225*X3**2) 
+X3**2*(48*X1+450*X3)))); 
FINISH DERIV; 
 
 


