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Título: Avances Citogenéticos y Neurobiológicos en el Síndrome de 
Down. 
Resumen: El síndrome de Down es una alteración autosómica que, tradi-
cionalmente, ha sido estudiada de forma independiente, desde ámbitos co-
mo la medicina, la biología o la psicología. En este artículo pretendemos ir 
más allá e incorporar una perspectiva multidisciplinar que contemple, por 
una parte, los principales hallazgos de estas disciplinas y por otra, las teorías 
que intentan explicar las complejas relaciones que se producen entre dichos 
hallazgos. Con este objetivo, revisamos los avances que se han realizado en 
el campo de la genética, la neuroanatomía y la neuroquímica en relación a 
este síndrome, así como las explicaciones que se han desarrollado para in-
tentar entender el perfil neuropsicológico asociado con esta alteración. 
Creemos que la incorporación de esta perspectiva ayudará a alcanzar una 
visión general sobre los correlatos psicobiológicos del síndrome de Down.  
Palabras Clave: Síndrome de Down; genética; neuroanatomía; neuroquí-
mica; neuropsicología; psicobiología. 

  Abstract: Down syndrome is an autosomal trisomy that traditionally has 
been studied independently from fields such as medicine, biology or psy-
chology. In this article, we intend to go further and incorporate a multidis-
ciplinary approach that includes, on the one hand, the main findings of 
these disciplines and, the theories that attempt to explain the complex rela-
tionships that occur between such findings. With this aim, we review the 
progress that has been made in the field of genetics, neuroanatomy and 
neurochemistry in relation to this syndrome, as well as the explanations 
that have been developed to try to understand the neuropsychological pro-
file associated with this condition. We believe that the incorporation of this 
perspective will help achieve an overview of the psychobiological correlates 
of Down syndrome. 
Key words: Down syndrome; genetics; neuroanatomy; neurochemistry; 
neuropsychology; psychobiology. 

 

Introduction 
 
Down syndrome (DS) is the most common genetic cause of 
intellectual disability (Nadel, 2003; Patterson, 2007). It was 
first described by Langdon Down in 1866, in an article pub-
lished in the London Hospital Reports (Parajuá-Pozo & 
Casis-Arguea, 2000; Sherman, Freeman, Allen & Lamb, 
2005). In this publication was already highlighted the pres-
ence of intellectual disability and a range of distinctive facial 
features, which to the author were similar to those of some 
eastern populations. The presence of these characteristic fa-
cial features allowed Langdon Down to define DS as a spe-
cific clinical entity (Carvajal, Iglesias & Loeches, 
1994; Mégarbane et al., 2009). 

Initially many hypotheses about the origin of DS were 
raised that alluded that DS was a throwback to more primi-
tive races, or it was due, either diseases or addictions of par-
ents, problems during pregnancy, endocrine disorders, age 
of the mother or even gynecological irregularities (Mar-
domingo, 1995). 

Afterwards, Waardenburg raised its genetic origin in 
1932 (Capone, 2001). But it was not until 1959 when Lejeu-
ne and his colleagues confirmed the presence of an extra 
chromosome in pair 21 in nine children with DS (Lejeune, 
Gautier & Turpin, 1959). Moreover, the advancement of cy-
togenetic techniques also revealed the existence of three un-
derlying chromosomal abnormalities on the onset of the 
syndrome: regular trisomy, translocation trisomy and mosai-
cism (Patterson, 2007; Serés, Cuatrecasas & Català, 2005). In 
the first and second case, the error occurs in the formation 
of gametes or the first mitotic division so it affects all somat-
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ic cells of the organism, the main difference being that in the 
case of regular trisomy has 47 whole chromosomes whereas 
in the translocation case has 46 chromosomes and an extra 
portion of chromosome 21 (HSA21). In contrast, in mosai-
cism the error occurs from the second mitotic division, 
which gives rise to two different cell lines, one with 47 
chromosomes and one with a normal genetic endowment. 

Currently, it is widely known that between 90-95% of 
cases are due to regular trisomy of HSA21, while the rest are 
due to HSA21trisomy by translocation or mosai-
cism (Bornstein et al., 2010; Patterson, 2007). 

When it was compared the phenotype of people with 
regular trisomy against the phenotype of people with DS due 
to translocation no significant differences were found. In 
any case, the varying extension of certain phenotypic traits 
seems to be related to the amount of additional genetic ma-
terial, but this does not seem to exert influence on the intel-
lectual level (Bornstein et al., 2010; Devlin & Morrison, 
2004a; Loeches, Iglesias & Carvajal, 1991). However, when 
this comparison has been carried out with cases caused by 
mosaicism it was observed that the latter present less ac-
cused phenotypic characteristics in relation to the number of 
cells affected (Devlin & Morrison, 2004b; Dreux et al., 2008; 
Serés et al, 2005). However, as in the previous case, the ex-
istence of this relationship has not been demonstrated in the 
case of intellectual level (Carvajal et al., 1994). 

In addition to its relationship with intellectual disability, 
regular trisomy appears to lead to a specific neuropsycholog-
ical profile (Kittler, Krinsky-McHale & Devenny, 2006; 
Menghini, Costanzo & Vicari, 2011; Ruggieri & Arberas, 
2003), mainly characterized by : a) deteriorated language 
skills, affecting this impairment more to the production than 
to the comprehension, as well as to the phonological and 
morphological domain than the semantic and pragmatic 
(Filder, Philofsky & Hepburn, 2007; Galeote, Soto, Sebas-
tián, Rey & Checa, 2012; Vicari, Caselli, Gagliardi, Tonucci 
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& Volterra, 2002); b) a visuospatial skills characterized by 
the presence of a dissociation between processing of percep-
tual aspects such as color and shape, that would be very de-
teriorated, and spatial processing, that would be best pre-
served (Jarrold, Nadel & Vicari 2008; Silverman, 2007; Vi-
cari, 2006); c) a executive dysfunction especially in subpro-
cesses, such as working memory for verbal material (Edgin, 
Pennington & Mervis, 2010; Lanfranchi, Jerman, Dal, Alber-
ti & Vianello, 2010; Rowe, Lavender & Turk, 2006) and d) a 
deterioration in episodic memory linked to advancing age 
(Krinsky-McHale, Kittler, Brown, Jenkins & Devenny, 2005; 
Vicari, 2004). 

All these neuropsychological characteristics are closely 
related to neurochemical and neuroanatomical alterations 
presented by people with DS. And therefore with the role of 
specific regions of HSA21in the processes of brain devel-
opment. For this reason, today, addressing its study is car-
ried out from a multidisciplinary perspective that attempts to 
clarify the links between the underlying genetic and molecu-
lar mechanisms, and the cognitive and behavioral profile 
they present (Lott, Patterson & Mailick, 2007; Nadel, 2003). 

Moreover, the sequencing of the human genome, the 
possibility of generating animal models of DS, the use of 
neuroimaging techniques, tissue analysis at the cellular level, 
as well as advances in neuropsychological assessment and 
functional knowledge of the brain have helped improve our 
understanding of the complex relationships between genes 
and neuroanatomical, neurochemical and neuropsychologi-
cal characteristics. The following are the latest findings in 
the field of genetics, neuroanatomy and neurochemistry in 
relation to the study of DS. 
 

Genetic advances 
 
Since Lejeune and his collaborators confirmed the presence 
of an extra chromosome in the chromosome pair 21 (Lejeu-
ne et al, 1959), the genetic study of DS has experienced a 
breakthrough. The discovery of the human genome, espe-
cially the complete sequencing of HSA21, published in Na-
ture (The chromosome 21 mapping and sequencing consor-
tium, 2004) and the study of trisomic and transgenic animal 
models have led to considerable improvement in the 
knowledge of the syndrome and the consequences of this 
trisomy (Patterson, 2007; Scorza & Cavalheiro, 2011). For 
example, thanks to the sequencing of this chromosome, to 
date, have been identified more than 530 genes (Park, Song 
& Chung, 2009; Sturgeon & Gardiner, 2011). Although, in 
spite of its identification, 45% of these genes function is still 
uncertain (Kahlem, 2006). 

Within this extraordinary progress, one of the findings 
with greater impact was the discovery, in the in the 1980s, 
that complete triplication of HSA21was not necessary for 
the distinctive DS features to appear (Petersen et al., 
1990). In fact, these features appear even when only the 
band 21q22 is tripled (Wilkie, Amberger & McKusick, 1994). 
Specifically, observations of people with partial trisomy of 

the 21q22.3 sub-band allowed to suggest that most signs of 
the syndrome, including intellectual disability, depend on the 
expression of this region. For this reason, is considered a 
critical region for DS, receiving the name of Down syn-
drome critical region (DSCR) (Chabert et al., 2004; Rachidi 
& Lopes, 2008). However, it must be taken into considera-
tion that the triplication of this region is regarded necessary 
but not sufficient to explain the phenotypic features of DS 
(Olson et al., 2007). Probably genes from other regions are 
also involved in the expression of certain features and may 
need to interact with them and between each other, to give 
rise to the characteristic phenotype of DS (Galdzicki & Siar-
ey, 2003). 

Currently, most studies are based on animal models, 
mainly by the multiple advantages they present (Liu et al., 
2011; Vacano, Duvak & Patterson, 2012). These models 
date back to 1973-74, when the first two genes located on 
HSA21were identified and for the first time mice with tri-
somy of chromosome 16 (MMU16), chromosome that is 
homologous to HSA21, were produced (Salehi, Faizi, Beli-
chenko & Mobley, 2007). 

In animal models we can find two strategies; trisomic 
mice based models and transgenic mice based models. Mice 
trisomic based models are focused on producing mice with 
triplication of a set of genes located on HSA21 homologous 
regions. On the other hand, models based on transgenic 
mice use mice in which a specific gene is inserted to assess 
the effect of its overexpression on the phenotype. Both 
strategies are useful, because the first allow us to assess the 
effects produced by the interaction between genes and are 
models closer to reality; and the latter allow to identify the 
phenotypic features dependent on the triplication of a par-
ticular gene. 

 
Trisomic mice 
 
Most of these models are based in mice with triplication 

of HSA21 or DSCR homologous regions. Their main find-
ing is having been shown that mere triplication of homolo-
gous regions to HSA21 and DSCR, like the partial trisomy 
of MMU16, result into neuroanatomical and behavioral fea-
tures similar to those present in individuals with DS. Be-
tween these neuroanatomical characteristics worth mention-
ing their implication in the development of cerebral hypo-
plasia, abnormal dendritic arborizations, as well as the fewer 
number of granule cells and the smaller size of the cerebel-
lum and hippocampus (Aldridge, Reeves, Olson & 
Richtsmeier, 2007; Belichenko et al., 2009; Bianchi et al., 
2010; O‟Doherty et al., 2005; Rueda et al., 2010; Siarey, Vil-
lar, Epstein & Galdzicki, 2005). Likewise, in relation to the 
behavioral features it has been shown the involvement of 
genes in these regions in the appearance of motor dysfunc-
tions, hypoactivity, impaired spatial learning and decrease in 
the frequency of exploratory behavior (Fernandez & Garner, 
2008; Galante et al., 2009; Olson et al., 2004; Sago et al., 
2000; Salehi et al., 2009; Villar et al., 2005). 
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Furthermore, there is also evidence of the involvement 
of the MMU16 in the emergence of cholinergic degeneration 
associated with advancing age, similar to that found in adults 
with DS and in people from the general population with 
Alzheimer's disease (Contestabile, Ciani & Contestabile, 
2008; Granholm, Sanders & Crnic, 2000; Hunter, Bachman 
& Granholm, 2004; Salehi et al., 2006). 

 
Transgenic Mice 
 
To date, the genes that have been overexpressed in mice 

to understand their contribution are APP, CBS, DSCR-1, 
DYRKLA, S100β, SIM2, C21orf5 and SOD1 (Gardiner, 
2009; Rachidi & Lopes, 2008; Salehi et al., 2007). 

The most remarkable finding of these studies is to have 
demonstrated the involvement of the APP gene in the de-
velopment of Alzheimer's disease. Since, at a behavioral lev-
el, mice with triplication of this gene present increases in 
spontaneous locomotive activity and changes in spatial 
learning; at a neurobiological level these behavioral findings 
have been associated with age-related cholinergic degenera-
tion and morphological alterations in the hippocampus, cor-
tex and cerebellum found in these mice and which are simi-
lar to those found in people with Alzheimer's disease (Ep-
stein, 2000; Lyle, Gehrig, Neergaard-Henrichsen, Deutsch & 
Antonarakis, 2004; Millan et al., 2012; Simón et al., 2009). 

These models also demonstrated the importance of 
overexpression of other genes on certain phenotypic traits, 
although its influence has not been established so clearly 
(Rachidi & Lopes, 2008). In particular, it has been found 
that overexpression of SOD1, DYRKLA, SIM2, C21orf5 
and S100β genes influence the onset of both neuroanatomi-
cal and behavioral features similar to those presented by 
people with DS (Gardiner, 2009; Salehi et al., 
2006). Specifically, it has been found a relationship between 
the overexpression of these genes and the emergence of al-
terations in brain plasticity, in the neuronal branches exten-
sion and cerebral apoptosis processes. And as to the behav-
ioral characteristics it has been found a link between these 
genes and alterations in spatial learning, acquisition of loco-
motion or the exploratory behavior (Altafaj et al., 2001; 
Chrast et al., 2000; Dierssen et al, 2011; Donato, 2003; 
Lopes, Chettouh, Delabar & Rachidi, 2003; Martínez et al., 
2008; Park et al., 2009; Yabut, Domagauer & D‟Arcangelo, 
2010). 

Although the findings of these animal models are still 
scarce and its practical application is still limited, it may be 
considered that, in addition to providing basic information 
about the underlying etiology to DS, it is possible that their 
study also provide information, which on its basis early 
pharmacological interventions could be developed that pre-
vent or compensate the appearance of some of the neuro-
psychological manifestations of DS  (Gardiner, 2009; Rueda 
et al., 2012; Scorza and Cavalheiro, 2011, Liu et al., 2011; 
Vacano et al., 2012) . 
 

Neurobiological advances 
 

Neuroanatomy 
 
The first neuroanatomical data on the DS were obtained 

from measurements post-mortem and, subsequently, were 
confirmed by using neuroimaging techniques (Dierssen, 
2012; Lott & Dierssen, 2010; Pinter, Eliez, Schmitt, Capone 
& Reiss, 2001; White, Alkire & Haier, 2003). 

These early studies showed that there were a number of 
structural abnormalities that were present in the majority of 
people with DS, which consisted of the presence of brachy-
cephaly, smaller brain weight and size, especially significant 
in the cerebellum, frontal and temporal lobes, and in the 
brainstem. It was also reported a significant increase in the 
size of the cerebral ventricles, a smaller hippocampus and 
amygdala, a narrower superior temporal gyrus, and a de-
crease in the number and depth of the cortical sulcus and 
convolutions. Likewise, since the first neuroanatomical stud-
ies was evident the presence of characteristic neuropatholog-
ical features of Alzheimer's disease in the 4th decade of life 
(De la Monte & Hedley-Whyte, 1990; Wisniewski, Wisniew-
ski & Wen, 1985). 

Subsequent neuroimaging studies have allowed detecting 
these alterations and other previously not found by post-
mortem studies. Among them, is noteworthy the presence 
of a smaller volume in the corpus callosum and the temporal 
plane as well as a greater bilateral volume in the parahippo-
campal gyrus and in the parietal lobe (Beacher et al., 2010; 
Frangou et al., 1997; Kesslak, Nagata, Lott & Nalcioglu, 
1994; Pearlson et al., 1998; Pinter, Eliez et al., 2001; Teipel et 
al., 2003; White et al., 2003). 

However, at subcortical level the structures tend to have 
a normal and even greater volume. Specifically, after adjust-
ing it to the total intracranial volume, there is a greater vol-
ume in the basal ganglia, thalamus and hypothalamus. 
Whereas the hippocampus and amygdala show a bilateral re-
duction, particularly accentuated in the left hemisphere 
(Aylward et al., 1997; Beacher et al., 2010; Jernigan, Bellugi, 
Sowell, Doherty & Hesselink, 1993; Pinter, Brown et al., 
2001; White et al., 2003). 

Both the neuroimaging studies and those conducted 
post-mortem, those based on brain biopsies and the studies 
based on animals models also have provided data on cere-
bral morphological characteristics at the cellular level of 
people with DS. In particular, reports a fewer number of 
granule cells in the cerebellum, defects in cortical lamination, 
reductions in the amount of cortical neurons, presence of 
malformations in arborizations and dendritic spines and syn-
aptic alterations (Becker, Mito, Takashima & Onodera, 1991; 
Belichenko et al., 2009; Golden & Hyman, 1994; Larsen et 
al., 2008; Vuksic, Petanjek, Rasin & Kostovic, 2002). Never-
theless, this reduction in the number and neuronal density 
does not affect equally all cortical layers, being especially 
pronounced in interneurons of cortical layers II and IV, and 
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the pyramidal neurons of the cortical layer III (Golden & 
Hyman, 1994; Lott & Dierssen, 2010). 

As just reviewed, the brain of people with DS, at the an-
atomical level, is characterized by alterations in very specific 
regions of both hemispheres. Among these alterations the 
most notable is the smaller volume presented by the hippo-
campus, amygdala, the temporal and frontal lobes, the brain-
stem, cerebellum and corpus callosum. Interestingly, some 
recent studies have linked these alterations in specific re-
gions with certain characteristics of the neuropsychological 
profile of individuals with DS. Specifically, lower volume in 
the frontal and cerebellar regions have been linked  with ex-
ecutive deficits and problems of fluency and verbal produc-
tion showed by people with DS compared with people with 
intellectual disabilities due to other etiologies or of unknown 
origin (Lott & Dierssen, 2010; Menghini et al., 2011; Pearl-
son et al., 1998; Pinter, Eliez et al., 2001). The lower volume 
on temporal cortical and subcortical regions (amygdala, hip-
pocampus and temporal lobe) with verbal comprehension 
difficulties, memory and larger deficit presented in purely 
perceptual processing aspects such as color and shape (Kra-
suski, Alexander, Horwitz, Rapoport & Schapiro, 2002; 
White et al., 2003). The reduction in these regions and in the 
corpus callosum, coupled with the onset of the characteristic 
lesions of Alzheimer's disease, has also been related with the 
progressive deterioration of episodic memory and the sub-
sequent onset of clinical signs of this dementia observed 
with advancing age (Prasher et al., 2003; Teipel et al., 
2003). Similarly, the fact that most of the subcortical struc-
tures and, above all, the posterior cortical areas (parietal and 
occipital lobe) are not morphologically altered has been 
linked with better performance on tasks of visuospatial pro-
cessing and visual motor coordination (Krasuski et al., 2002; 
Pinter, Eliez et al., 2001). 

 
Neurochemistry 
 
Neurochemical studies are very scarce and most deal 

with the changes that people with DS experience when ad-
vancing age. 

Since its inception these studies found abnormalities in 
both the brain and the cerebrospinal fluid and blood 
(Boullin & O‟Brien, 1971; Mann, Yates, Marcyniuk & 
Ravindra, 1985; Scott, Becker & Petit, 1983). Currently, the-
se early findings have been refined. Following we proceed to 
describe in more detail the findings that have been obtained 
in relation to each of the neurotransmitters that appear to be 
altered in people with DS. 

 
Serotonergic function 
 
Early studies revealed a loss of serotonin in the brain, 

cerebrospinal fluid and blood (Whitaker-Azmitia, 2001). 
Consistent with these studies, more recent ones noted an 
earlier peak in the embryonic development of serotonergic 
receptors within the DS in comparison with the general 

population followed by a decline below normal levels at 
birth (Bar-Peled et al., 1991). In addition to reporting a de-
crease of these receptors in the frontal cortex and in the 
granular layer of the dentate nucleus in fetuses with DS who 
are among the 16 and 20 weeks of gestation (Whittle, Simo-
ne, Dierssen, Lubec and Singewald, 2007). 

These results are particularly relevant, if we take into ac-
count that a decrease in serotonin levels in embryos produc-
es a delay in the onset of neurogenesis, reductions in non-
serotonergic synapse density and a decrease in brain plastici-
ty (Berger-Sweeney & Hohmann, 1997; Brezun & Daszuta, 
1999). Therefore it is expected that the serotonergic reduc-
tion experienced by individuals with DS during embryonic 
development plays an important role in the onset of neuro-
anatomical alterations presented later. The issue that still is 
not clear is to what extent this reduction can account for all 
abnormalities of brain development observed in DS (Whittle 
et al., 2007). 

In adults also appear to exist alterations in serotonin lev-
els. Specifically, higher levels have been found in frontal and 
occipital regions, as well as lower levels in the thalamus, 
caudate nucleus, cerebellum and temporal cortex (Gulesseri-
an, Engidawork, Cairns & Lubec, 2000; Mann et al., 1985; 
Seidl et al., 1999). 

Likewise, studies in animals have also provided data sup-
porting the existence of a serotonergic loss in people with 
DS. For example, studies of mice with overexpression of the 
S100β gene found an association between overexpression of 
this gene and serotonin neuron loss of serotonergic neurons 
in temporal lobe (Salehi et al., 2007; Whitaker-Azmitia, 
2001). 

Based on these results, pharmacological treatments tar-
geted at people with DS include for some time, serotonergic 
agents (Whitaker-Azmitia, 2001). Moreover, several studies 
suggest the usefulness of these in the treatment of self-
injurious and aggressive behavior, as well as to produce im-
provements in cognitive functioning and depressive states 
(Gedye, 1991; Geldmacher et al., 1997; Hirayama, Koba-
yashi, Fujita & Fujino, 2004). 

 
Amino acids group neurotransmitters  
 
In relation to the levels of the Amino acids group neuro-

transmitters that present people with DS, only alterations in 
the levels of GABA and taurine have been 
found. Specifically, reductions of these levels are found in 
the frontal cortex during the embryonic period but not in 
adult life (Whittle et al., 2007). 

When considering these reductions, it is important to 
note that in vitro studies have shown that activation of 
GABAA receptors promote the neuronal proliferation and 
differentiation (Represa & Ben-Ari, 2005) and that their an-
tagonists are associated with reductions in neural ramifica-
tions (Barbin, Pollard, Gaiarsa & Ben-Ari, 1993). Similarly, 
studies in humans and animals have shown that maternal di-
ets deprived of taurine are associated with decreased den-
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dritic arborization and atypical cortical development (Whittle 
et al., 2007). It is therefore likely that these reductions also 
affect the brain development of people with DS. 

 
Dopamine 
 
In the case of dopamine, unlike what happens with levels 

of GABA and taurine, its reduction has been found both 
during the embryonic period as well as in adults with DS 
which show characteristic neuropathological signs of Alz-
heimer's disease (Whittle et al., 2007). This reduction mainly 
affects dopaminergic neurons of the ventral tegmental area 
(Mann & Esiri, 1989). 

Dopamine is involved in the establishment of synaptic 
contacts. For example, has been noted that dopaminergic 
reductions, achieved by damaging the ventral tegmental area 
produced reductions in the cortical thickness (Kalsbeek, 
Buijs, Hofman, Matthijssen & Pool, 1987). Therefore, it can 
be assumed that, together with the rest of neurochemical al-
terations present during the embryonic period, dopamine 
reduction contributes to the development of the morpholog-
ical characteristics which exhibit later. In addition, reduced 
levels of dopamine in adult life, points to the possibility that 
this reduction is also involved in the onset of neuroanatomi-
cal and functional changes associated with Alzheimer's dis-
ease in DS. 

 
Norepinephrine 
 
Norepinephrine shows a pattern characterized by the 

presence of normal levels in childhood which are altered 
with advancing age (Whittle et al., 2007). In fact, it has been 
found that with advancing age, adults with DS present dam-
age in ascending noradrenergic system, attributed to the loss 
of neurons in the locus coeruleus. This loss produces reduc-
tions of norepinephrine in the hypothalamus, which appears 
in parallel to the onset of Alzheimer's disease (Yates, Simp-
son & Gordon, 1986). This could imply that reductions of 
norephinephrine would also contribute to the appearance of 
the characteristic neuropathological changes of Alzheimer's 
disease and its clinical manifestations. 

 
Acetylcholine 
 
Acetylcholine does not present alterations neither during 

the prenatal period nor during childhood. Conversely, in 
adults with DS there is a loss of cholinergic neurons of the 
nucleus basalis of Meynert, similar to that observed in peo-
ple from the general population with Alzheimer's disease, 
who exhibit a progressive degeneration of neurons that pro-
ject to the hippocampus (Casanova, Walker, Whitehouse & 
Price, 1985; Head et al., 2001; Mann et al., 1985; Whitehouse 
et al., 1982). In animal models, like mice Ts65Dn or mice 
with overexpression of the APP gene, a similar pattern has 
been find, i.e.: a preserved cholinergic system in young mice 
that deteriorates with advancing age (Chang & Gold, 2004; 

Contestabile et al., 2008; Hunter et al., 2004; Millan et al., 
2012; Salehi et al., 2006). 

In addition, it has been found that the acetylcholinester-
ase inhibitors produce improvements in memory during ag-
ing (Boada-Rovir, Hernández-Ruiz, Badenas-Homiar, 
Buendía-Torras & Tárraga-Mestre, 2005; Dong et al., 2005), 
highlighting the relationship between cholinergic function 
and memory (Chang & Gold, 2004; Granholm et al., 
2000). This relationship could be of great importance when 
evaluating the cholinergic loss in adults with DS and in 
adults with Alzheimer's disease (Parajuá-Pozo & Casis-
Arguea, 2000; Prasher, 2004). 

In summary, during the embryonic period we can high-
light the presence of alterations in neurotransmitters that af-
fect the brain development.  We should note the morpho-
logical alterations are not significantly revealed until the first 
year of life (Capone, 2001; Pinter, Eliez et al., 2001) and that 
its appearance has been attributed to alterations in the pro-
cesses of brain development (Becker et al., 1991; Rachidi & 
Lopes, 2008; Vuksic et al., 2002). From these data, we can 
assume that the observed alterations in the distribution of 
neurotransmitters are a cause and not a consequence of 
morphological abnormalities (Carvajal et al., 1994; Whittle et 
al., 2007). 

Specifically, the neurotransmitters altered from the em-
bryonic period are serotonin, GABA, dopamine and taurin. 
And such alterations would lead to lower total brain volume 
of the hippocampus, amygdala, cerebellum and brainstem, as 
well as the alterations in dendritic spines, in the synapses and 
in the cortical lamination, as the lower count of cortical neu-
rons that characterize individuals with DS. 

On the other hand, in light of the consequences that bi-
ochemical alterations during embryonic development in-
volve, it is interesting considering the possibility that bio-
chemical changes that occur with advancing age are respon-
sible for the morphological and functional changes experi-
enced by aging persons with DS and with the onset of Alz-
heimer's disease. Specifically, for now has been demonstrat-
ed the involvement of the reductions in the levels of dopa-
mine and norepinephrine, and especially, the reductions in 
the levels of acetylcholine in the onset of morphological and 
functional changes that characterize Alzheimer's disease 
(Millan et al., 2012; Parajuá-Pozo & Casis-Arguea, 2000; 
Whittle et al., 2007). 
 

Conclusions 
 
DS is the autosomal chromosomal condition showing a 
higher prevalence (1 in 800 to 1000 live births) (Brajenovic´-
Milic et al., 2008; Cocchi et al., 2010; Morris & Alberman, 
2009). So its study has a major impact on the field of devel-
opmental disorders and particularly within the field of intel-
lectual disability. In fact, this chromosomal condi-
tion constitutes approximately el 25% of cases of intellectual 
disability (Serés et al., 2005) and in Spain affects approxi-
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mately to 31500 people (National Institute of statistics -INE, 
2008). 

Review of the biological data that define it, may help un-
derstand the complex relationships between genes, neuroan-
atomical, neurochemical and neuropsychological characteris-
tics in relation to DS. In this sense, its knowledge can serve 
for designing diagnostic procedures and psycho-pedagogical 
and pharmacological interventions better tailored to their 
characteristics at each time point and therefore to be more 
effective.  

In particular, genetic studies have shown that the over-
expression of both isolated and of sets of genes of HSA21, 
as well as their interaction with other genes, is related to the 
onset of some phenotypic characteristics of people with DS.  

Likewise, taking into consideration together the findings 
from neuroanatomical and neurochemical studies reveals 
that differences in neural mechanisms at chemical level pro-
duce alterations in the brain development processes, which 
in turn lead rise to neuroanatomical changes. We could even 
take a step further to incorporate into this consideration the 
approaches brought by some neurobiological studies on DS 

that  linked the presence of specific neurochemical and neu-
roanatomical alterations with the strong and weak points 
that characterize the neuropsychological profile of persons 
with DS, as well as the changes experienced in their cogni-
tive functioning with advancing age. 

Although these conclusions should be regarded with 
caution since there are few studies that have focused on ex-
ploring the relationship between neurobiological data and 
cognitive performance, we want to finish this article pointing 
out the enormous progress achieved in recent years in the 
study of the DS psychobiological correlates. We also want to 
highlight the importance of incorporating a multidisciplinary 
perspective in the study of the DS which in the near future 
allows consider interventions that influence all the nervous 
system as a whole.  
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