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Título: Meta-análisis: Intervalos de confianza e Intervalos de predicción. 
Resumen: En los informes meta-analíticos se suelen reportar varios tipos 
de intervalos, hecho que ha generado cierta confusión a la hora de interpre-
tarlos. Los intervalos de confianza reflejan la incertidumbre relacionada con 
un número, el tamaño del efecto medio paramétrico. Los intervalos de pre-
dicción reflejan el tamaño paramétrico probable en cualquier estudio de la 
misma clase que los incluidos en un meta-análisis. Su interpretación y aplica-
ciones son diferentes. En este artículo explicamos su diferente naturaleza y 
cómo se pueden utilizar para responder preguntas específicas. Se incluyen 
ejemplos numéricos, así como su cálculo con el paquete metafor en R. 
Palabras clave: Intervalo de confianza. Intervalo de predicción. Meta-aná-
lisis. 

  Abstract: Several types of intervals are usually employed in meta-analysis, a 
fact that has generated some confusion when interpreting them. Confidence 
intervals reflect the uncertainty related to a single number, the parametric 
mean effect size. Prediction intervals reflect the probable parametric effect 
size in any study of the same class as those included in a meta-analysis. Its 
interpretation and applications are different. In this article we explain their 
different nature and how they can be used to answer specific questions. Nu-
merical examples are included, as well as their computation with the metafor 
R package. 
Keywords: Confidence interval. Prediction interval. Meta-analysis. 

 

Introduction 

 
In meta-analysis, several types of intervals are used, a circum-
stance that has generated some confusion in their interpreta-
tion, given their different nature. In this paper we explain what 
the two main types of intervals consist of, including numerical 
examples. We begin by remembering the difference between 
fixed effect models (FEM) and random effects models (REM), a key 
issue to fully understand the topic we are addressing here. We 
will then explain the characteristics of the two main types of 
intervals used in meta-analyses, but also describing an inter-
mediate type widely used in validity generalization studies. 
Then we will illustrate all this with a numerical example. After 
highlighting the role of prediction intervals in reflecting the 
heterogeneity of effects we will address the discussion and a 
general recommendation. 

For this exposition we represent the parameter that re-
flects the effect we are studying by θ and we assume that we 
have k independent estimates. 

 

Fixed and random effects models 
 

As we have already explained elsewhere (e.g., Botella & 
Sánchez-Meca, 2015), in a FEM (also called common effect model) 
it is assumed that the analysis being carried out refers to a sin-
gle parametric value (θ). Each primary study provides an esti-

mate of that parameter ( ˆ
i ). The estimates have a variance, 

which we call sampling variance, which must be interpreted as 
inaccuracy in the estimate, since it is due to the fact that each 
study manages data from a specific random sample, different 
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from those of the other studies. Although it is sometimes as-
sumed to be known (e.g., Higgins, Thompson, & Spiegelhal-
ter, 2009), actually the sampling variance is in turn an esti-

mated value, which we represent by var( ˆ
i ). As each study has 

a different sample size, we have a different sampling variance 
in each study; hence the subscript i of the sampling variances. 
Therefore, 
a) if the sample sizes of the studies were equal, the paramet-

ric sampling variances of the studies would all be the same 
(although their estimates could be different), and 

b) in a hypothetical case in which the sample sizes were in-
definitely large, tending to infinity, the empirical variance 
would tend to 0. 

 
In a REM it is accepted that the parametric value of each 

study is different. These parametric values have a distribution 

that is usually assumed to be normal, with mean 
  and var-

iance 2

  (this variance is also usually represented as 2  and is 

called between-studies variance, specific variance or heterogeneity vari-
ance). This means that the variance of each study's effect size 
estimator has two sources of variation. On the one hand, the 
variance of the parametric effects; on the other hand, the sam-
pling variance of the parametric effect of each study, which is 
similar to the variance of the FEM for that particular study. 
Therefore, 
a) if the sample sizes of the studies were equal, the paramet-

ric sampling variances of the studies would all be the 
same12(although their estimates could be different), and 

b) in a hypothetical case in which the sample sizes were in-
definitely large, tending to infinity, the empirical variance 

would tend to 2 . 

12As long as the value of θi itself is not involved in the variance, as occurs with 
the standardized mean difference (Cohen's d; Suero, Botella, Durán, & Blázquez-
Rincón, 2023). This is not the case with other effect size indices, such as the 
Pearson correlation transformed with Fisher's formula. 
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Confidence interval (for the mean effect) 
 

The most extended confidence interval in meta-analysis is the 
one that refers to the magnitude of the effect of interest. In a 
FEM the magnitude of the effect is unique:  . Its point esti-

mator is the weighted combination of the k estimates, ˆ
i , rep-

resenting such combined estimate with ̂•
. However, in the 

REM this is not the case, rather it is assumed that there is a 
distribution of parametric values. A magnitude of maximum 
interest in this model is the estimation of the mean value of 
the parametric effects, 

 , since it is often interesting to know 

the “average effect” of an intervention. This magnitude is also 
estimated through a weighted average of the k independent 
estimates, ˆ

 . One of the common sources of confusion is 

just that in both types of models the value of interest is esti-
mated through a weighted combination of the independent 
estimates provided by the k studies. But in the case of the 
REM it is about estimating what value the distribution of par-
ametric effects is centered on. Therefore, a single, specific 
value is also estimated. 

However, that value tells us nothing about the variations 
of the parametric effects. A single parametric value, 

 , is not 

sufficient to effectively describe effects that are heterogene-
ous (Borenstein, 2019b). Figure 1 shows three distributions of 
parametric effects of the standardized mean difference (or Cohen's 
d). Curves A and B are centered on the same value (

( ) ( )A B  = ), but have different variances           ( 2 2

A B  ). 

On the contrary, curves A and C have different central values 

(
( ) ( )C A   ), but the same variance ( 2 2

A C = ). 

 
Figure 1 
Three distributions of parametric effects 

 
 

In summary, this first interval is a classic confidence inter-
val, with which a single, specific value is estimated: the only 
parametric value in the FEM or the central value of the distri-
bution of parametric values in the REM. The formulas are2:3 

 

FEM: 
ˆ/2

ˆ ˆz 
 

•
•        (1) 

REM: 
ˆ/2

ˆ ˆz
          (2) 

 
23We assume that the standardized mean difference is distributed according to the 
normal model, something we positively know is incorrect, although approxi-
mate. We do it for convenience and simplicity, but also because in the R pack-

 
In the FEM, the parametric effect is estimated by a 

weighted average of the individual effects: 
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being 
,

ˆ
FE iw  the weighting factor of each study, which is ob-

tained through the inverse of the sampling variance,         var(
ˆ
i ): 
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The standard error of the estimated effect is obtained 
through: 

 

ˆ

,

1
ˆ

ˆ
FE iw




•

=


     (5) 

 

And zα/2 is the value corresponding to the (α/2)·100th 
percentile (in absolute value) of the standard normal distribu-
tion. 

In the REM, the parametric mean effect is also estimated 
by a weighted average of the individual effects, but the 
weighting factor is different: 

 

,

,

ˆˆ
ˆ

ˆ

RE i i
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w
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=



      (6) 

 

Being 
,

ˆ
RE iw  the weighting factor of each study, which is 

obtained by the inverse of the sum of the sampling variance, 

var( ˆ
i ), and the between-studies variance, 2̂ : 

 

( )
, 2

1
ˆ

ˆ ˆvar
RE i

i

w
 

=
+

     (7) 

 

The between-studies variance is estimated by one of the 
methods proposed in the literature, for example, by restricted 
maximum likelihood (cf. e.g., Sánchez-Meca & Marín-Mar-
tínez, 2008; see also Suero, Botella, & Durán, 2023). The 
standard error of the estimated mean effect is calculated by: 
 

ˆ

,

1
ˆ

ˆ
RE iw


 =


      (8) 

Its interpretation is the traditional one for this type of in-
tervals: the CI95% provides a range of values with respect to 

age that we will use for the examples it is done like this. Actually, the distri-
bution of Cohen's d is the non-central Student's t (Suero, Botella, Durán, & 
Blázquez-Rincón, 2023). 
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which we have a 95% confidence that it includes the value of 

interest (  under the FEM, and 
  under the REM). In 

other words, if we were to repeat the actions that have led us 
to that interval an indefinitely large number of times, under 
the same conditions, then approximately 95% of the intervals 
would include the value of interest. 

The CI95% presented in equation (2) for the REM does 
not take into account the uncertainty in the estimate of the 

standard error of the mean effect, 
ˆ

ˆ


 , nor of the between-

studies variance, 2̂ . As a consequence, the calculated inter-

val’s width tends to be underestimated. To solve this problem, 
Hartung and Knapp (2001; cf. also Sidik & Jonkman, 2002) 
proposed an alternative formula to calculate the CI95% that 
takes this uncertainty into account. On the one hand, the 
Hartung-Knapp method uses a Student's t distribution with k 
– 1 degrees of freedom instead of the standard normal distri-
bution. Second, it applies a correction factor to the variance 
of the mean effect. With q being the correction factor, it is 
obtained by: 
 

( )
2

,

1 ˆˆ ˆ
1

RE i iq w
k

 = −
−
      (9) 

 

Although unlikely, the correction factor, q, may be less 
than 1, in which case the variance by this method would be 
less than the original variance, resulting in narrower confi-
dence intervals. In order to avoid this circumstance, Hartung 
and Knapp (2001) recommend truncating the value of q, so 
that they make q* = máx[1, q]. Thus, the variance of the mean 
effect according to the Hartung-Knapp method is given by 
(Partlett & Riley, 2017): 
 

2 2

ˆ ˆ,
ˆ ˆ

HK q
   =        (10) 

 

In summary, the confidence interval for the Hartung-
Knapp method is obtained by: 
 

( )
2

ˆ,1 , /2
ˆ ˆ:HK HKk

RE t
 

 
−

      (11) 

 

It should be taken into account, however, that there are 
authors who do not recommend truncating the q value when 
it is less than 1. Simulation studies have shown a better adjust-
ment to the confidence level and greater power when the 
Hartung-Knapp method is used without truncating than when 
following the authors' recommendation to truncate the value 
of q (Viechtbauer et al., 2015). Thus, the method for calculat-
ing the CI95% proposed by Hartung and Knapp does not in-
clude such truncation in the R package metafor. The meta-anal-
ysis module that incorporates version 28 of the IBM SPSS 
program includes both options, truncated and non-truncated 
(cf. IntHout, Ioannidis, & Borm, 2014; Jackson et al., 2017 for 
a review of alternatives in using the Hartung-Knapp method). 

 

 

Prediction interval 
 

As prediction intervals have a direct antecedent in the so-
called credibility or validity intervals, we are going to explain 
these first and then we will explain the development that leads 
from validity intervals to prediction intervals. In the classic 
literature on the generalization of validity, the terms credibility 
interval and validity interval are used interchangeably (Hunter, & 
Schmidt, 1990). But we want to highlight that recently the use 
of the first term (credibility interval) has spread within the 
Bayesian approach (Schmid, Carlin, & Welton, 2021), alt-
hough we will not dwell on that use here. 

Credibility intervals were proposed by Hunter and Schmidt 
(1990) for a different objective than confidence intervals, 
within the framework of a type of meta-analysis known as va-
lidity generalization. It is only possible to calculate them under 
REM, but in the social and health sciences in general, and spe-
cifically in psychology, it is assumed that REM reflect better 
the scenario of the phenomena that interest us and are as-
sumed by default. A consequence of assuming a REM sce-
nario has to do with the expectation of effects in future stud-
ies. As can be seen in Figure 1, to characterize a distribution 
of effects, at least two magnitudes are needed: the central 
value or mean effect and the variance of the effects. The first 
refers to the mean effect of future studies of the type referred 
to in the population of studies. The second refers to how het-
erogeneous these effects are. Suppose we are talking about the 
impact of a therapy as reflected in a quantitative variable, com-
pared to untreated patients on the waiting list. Each study with 
a randomized group design involving these two conditions 
would have a parametric effect belonging to a distribution of 

Cohen's index, with mean 
  and variance 2 . Estimating 

  by ˆ
  and its confidence interval, will only allow us to 

establish what the mean parametric effect would be in an in-
finitely large number of future similar studies. In other words, 
it allows us to conjecture where the distribution of effects is 
centered. 

However, we are also interested in knowing what varia-
tions can be expected in these effects, since what interests us 
is each of the future applications. Specifically, if the paramet-
ric effects were very homogeneous around 

 , then decision 

making would be very direct and uncontroversial. But what 
happens if these parametric effects were very heterogeneous? 
It could be possible that in the next study the effect would be 
very large, much larger than the mean effect, but it could also 
be very small, or even null or negative. Depending on the type 
of problem and its consequences, it could be unacceptable for 
the intervention to have a very small effect or contrary to its 
efficacy. It is useful to have an idea, therefore, of what is the 
smallest effect that is reasonable to expect. 

Hunter and Schmidt (1990) proposed the term credibility 
intervals for the intervals that report ranges referring to para-
metric values. They are obtained by: 
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/2
ˆ ˆz           (12) 

 

For example, suppose that we are working with the stand-
ardized mean difference and that we estimate that the mean 
effect is 0.60 and the variance of these parametric effects is 
0.04 (the standard deviation is 0.2). The estimated distribution 
assuming normality, using (12), is the one that appears in Fig-
ure 2 for three alternative confidence levels. Between the val-
ues 0.208 and 0.992 are the central 95% of the parametric val-
ues, between the values 0.271 and 0.929 are 90%, and between 
the values 0.344 and 0.856 are 80%. With these results, we can 
conclude with statements such as the following, which, as can 
be seen, do not refer exclusively to the average value of the 
distribution of effects: 

a) With probability approximately .90, in a new study on an inter-
vention of this type the effect will be between 0.271 and 0.929, 
and with probability .80 it will be between 0.344 and 0.856. 

b) With probability approximately .95, in a new study on an inter-
vention of this type the effect will be equal to or greater than 
0.271, and with probability .90 it will be at least 0.344 (one-
sided prediction intervals). 
 
Figure 2 
Representation of three credibility intervals 

 
 

It is important to emphasize again that these statements 
do not refer to a mean value, but to the effect of a new exam-
ple of this class of interventions, such as that of the next study. 
What is stated in example b) is important in that it provides 
us with a floor value for the effects. Sometimes it is not advisa-
ble to apply an intervention if it is not going to have a certain 
minimum effect, since we do not want to risk the effect being 
too small, or even null or negative. Statements of this type 
only involve the lower limit of the interval, since they refer to 
the effect that will be obtained, at least, with the indicated 
probability. 

On the other hand, a highly variable distribution of effects 
is likely to include negative effects. For example, Figure 3 
shows a distribution of effects with mean 0.50 and variance 
0.09 (standard deviation 0.3). The values at two standard de-
viations from the central value are 0.50 ±2·0.30: [1.10; -0.10]. 
Then, it is possible that the effect is negative, which means 
that the intervention could not only not be beneficial, but 

could be harmful. In the example, that probability is small [P(z 
≤ (0 - 0.5)/ 0.3) = .0475], but it could still be unacceptable. 

 
Figure 3 
Representation of a distribution of effects extending from negative values (detrimental effect) 

 
 

In summary, credibility intervals, created in the context of 
the type of meta-analysis known as validity generalization, 
provide estimated ranges of parametric values. They reflect 
the probabilities that a future new study will have an effect 
between two values or that the effect will be at least equal to 
a certain value. 

Let us now turn to prediction intervals (Higgins, Thompson, 
& Spiegelhalter, 2009; Riley, Higgins, & Deeks, 2011). They 
are conceptually identical to those of credibility and can be 
considered a development and sophistication of these. How-
ever, while credibility intervals are hardly used outside the 
scope of validity generalization studies, prediction intervals 
are used in very varied fields and their presence is increasing 
in meta-analyses of both psychology and other fields, such as 
medicine in general. 

The objective of prediction intervals is the same as that of 
credibility intervals: to offer a range of probable values for the 
parametric effect of a future new study of the same type of 
those that have been included in the meta-analysis. The dif-
ferences with the credibility intervals are rather technical: they 
assume and include in the model the uncertainty associated 

with the estimation of both 
  and 2 . In the credibility in-

terval, when calculating 
/2

ˆ ˆz     it is assumed that both 

values are known. Recognizing that they are estimates and, 
therefore, imprecise values, the uncertainty derived from the 
estimation process is taken into account. Specifically, if we as-
sume that the central value of the distribution is in the range 
provided by its confidence interval, then the smallest value of 
the effect we want to identify will be at certain distance from 
its lower limit, not from the central value of the interval. The 
same goes for the upper limit of the interval. On the other 
hand, by recognizing the uncertainty associated with these two 
magnitudes, the distribution model is no longer normal, but 
Student's t with (k-2) degrees of freedom. There is some con-
troversy regarding the appropriate degrees of freedom, but 
many authors follow the suggestion of Higgins et al (2009) to 
use the tk-2 distribution as a reasonable and practical option 
(e.g., Borenstein et al, 2021; Stijnen, White, & Schmid, 2021). 

In summary, the prediction interval can be obtained 
through (Higgins et al, 2009), 

 

2 2

ˆ/2 2
ˆ ˆ ˆ

kt     −  +      (13) 
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The prediction interval defined in (13) uses the sample 
variance originally proposed for the mean effect in a REM, 

2

ˆ
ˆ


 , which is calculated by the square of equation (8). Instead, 

it is more advisable to use the variance proposed by Hartung 

and Knapp, 2

ˆ,
ˆ

HK 
 , defined in equation (10), which takes into 

account the uncertainty when estimating both the between-
studies variance and the mean effect (Partlett & Riley, 2017): 
 

2 2

ˆ/2 2 ,
ˆ ˆ ˆ

k HKt
    −  +      (14) 

 

An important difference between confidence intervals and 
prediction intervals is that, if the number of studies is progres-
sively increased, the confidence interval reduces its width and 
tends to 0 when the number of studies tends to infinity. This 
is because the only component of the variance involved, 2

ˆ
ˆ


 , 

decreases as the number of studies increases. On the contrary, 
no matter how many studies are added, the width of the pre-
diction interval has a floor value that cannot be exceeded. This 
is because one of the components of the variance involved, 

2 , does not change with the number of studies (although its 

estimate does improve). 
 

An example 
 

In this section we illustrate what has been said so far through 
a numerical example (the R code in the appendix allows re-
producing the calculations). The following table shows the 
standardized mean difference estimates (g, or corrected Cohen's d) 
from 15 independent studies and their sample sizes. With 
these three values we have obtained the sampling variances 
that appear in the last column with the approximate formula 
of Hedges and Olkin (1985; formula [2.8] in Botella & 
Sánchez-Meca, 2015). The results offered by metafor (Viecht-
bauer, 2010) also appear in the table when fitting the FEM 
and the REM, estimating the specific variance by restricted 
maximum likelihood. We have numerous alternative methods 

to estimate 2 , but there is still not enough agreement on the 

best options (Blázquez-Rincón, Sánchez-Meca, Botella & 
Suero, 2023; Langan, et al, 2017, 2019; Veroniki et al, 2016). 
For this example, we have chosen a frequently used and rec-
ommended method, restricted maximum likelihood, that does 
not have the disadvantages of the well-known method of mo-
ments (Viechtbauer, 2005). We detail in the right part of the 
Table 1 the calculations for the types of intervals explained 
above. 

 

Table 1 
Calculations for the types of intervals 

Study   N1 N2      g         Var_g  

1      11 11     0.2700   0.18350 
2     123 135   0.2991         0.01571 
3      14 16     0.0584   0.13399 
4      36 35   -0.0198    0.05635 
5      20 20     0.7645   0.10731 
6      24 23     0.9341   0.09443 
7      20 12     0.1560   0.13371 
8      80 75     0.2388   0.02602 
9      18 18     0.0293   0.11112 
10      16 16    1.2087    0.14783 
11      32 20     0.4728   0.08340 
12      16 18     0.7811   0.12703 
13      20 20    1.0977    0.11506 
14      76 58     0.8551   0.03313 
15      24 16     0.2156   0.10475 

Fixed-Effects Model (k = 15) 
I^2 (total heterogeneity / total variability):   49.74% 
H^2 (total variability / sampling variability):  1.99 
Test for Heterogeneity: 
Q(df = 14) = 27.8570, p-val =  .0149 
Model Results: 
estimate      se          zval          pval       ci.lb      ci.ub  
  0.4326    0.0640    6.7593     < .0001  0.3071   0.5580 
 

Random-Effects Model (k = 15; tau^2 estimator: REML) 
tau^2 (estimated amount of total heterogeneity):  .0690 (SE =  .0551) 
tau (square root of estimated tau^2 value):       .2627 
I^2 (total heterogeneity / total variability):   51.24% 
H^2 (total variability / sampling variability):  2.05 
Test for Heterogeneity: 
Q(df = 14) = 27.8570, p-val =  .0149 
Model Results: 
estimate       se          zval         pval       ci.lb       ci.ub  
  0.4707    0.1007     4.6760   < .0001   0.2734   0.6680*** 
Model Results (Hartung-Knapp method): 
estimate      se           tval     df    pval      ci.lb     ci.ub  
  0.4707   0.1012     4.6493  14   .0004   0.2535   0.6878*** 
95% Prediction Interval (assuming a standard normal distr.): 
pred            se         ci.lb      ci.ub      pi.lb       pi.ub  
  0.4707   0.1007    0.2734  0.6680   -0.0808   1.0221 
95% Prediction Interval (Hartung-Knapp method): 
pred         se             ci.lb      ci.ub        pi.lb      pi.ub  
 0.4707   0.1012     0.2535    0.6878   -0.1332   1.0746 

 

  



Meta-analysis: Confidence intervals and Prediction intervals                                                                                    349 

anales de psicología / annals of psychology, 2024, vol. 40, nº 2 (may) 

The confidence interval is the only one that can be calculated 
under a FEM. The estimates for both models are those pro-
vided directly by metafor, which we detail below applying for-
mulas (1), (2) and (11): 

 
CI95%(FEM): 0.4326 ± 1.96·0.0640:            [0.307; 0.558] 
CI95%(REM): 0.4707 ± 1.96·0.1007:           [0.273; 0.668] 
CI95%(REM by HK): 0.4707 ± 2.145·0.1012:[0.254; 0.688] 

 
The value 2.145 corresponds to the 97.5th percentile of 

the Student t distribution with k - 1 = 15 - 1 = 14 degrees of 
freedom. The value 0.1012 is the square root of the magnitude 
obtained with equation (10). 

As we have already explained, the credibility and predic-
tion intervals can only be calculated under the REM. Specifi-
cally, the credibility or validity interval would be the one pro-
vided by formula (12): 

 
VI95%: 0.4707 ± 1.96·0.2627:         [-0.044; 0.986] 
 

The prediction intervals are those provided by formulas 
(13) and (14) (the value 2.16 corresponds to the 97.5th per-
centile in the t distribution with k-2 = 13 degrees of freedom): 

 
PI95%: 0.4707 ± 2.16·sqrt(0.26272 + 0.10072) = 

= 0.4707 ± 2.16·0.2813: [-0.137; 1.078] 
PI95% by HK: .4707 ± 2.16·sqrt(0.26272 + 0.01024) = 

=  0.4707 ± 2.16·0.2813: [-0.137; 1.079] 
 

Note that the PI95% calculated with equation (13), [-
0.137; 1.078], does not match the one reported in the output 
of the metafor program: PI95%[-0.0808; 1.0221]. This is be-
cause the formula implemented in metafor is not equation (13), 
but rather assumes a standard normal distribution instead of 
a Student's t distribution. The formula implemented in metafor 
is, therefore (Viechtbauer, 2023, p. 32): 

 

2 2

ˆ/2
ˆ ˆ ˆz

      +       (15) 

 
Likewise, note that the PI95% by HK calculated with 

equation (14), [-0.137; 1.079], also does not match the one re-
ported in the output of metafor: PI95%HK[-0.1332; 1.0746]. 
This is because metafor uses (k – 1) instead of (k – 2) as degrees 
of freedom of the Student's t distribution. Thus, the formula 
implemented in metafor for the PI95% by the Hartung-Knapp 
method is (Viechtbauer, 2023, p. 32): 

 

2 2

ˆ/2 1 ,
ˆ ˆ ˆ

k HKt
    −  +      (16) 

 
Note that the prediction interval is more imprecise (wider) 

than that of validity or credibility and, in turn, the Hartung-
Knapp prediction interval is wider than the one that does not 
apply this method. The results can be interpreted in the fol-
lowing way. The CI95% indicates, under the FEM, that we 

can conclude, with 95% confidence, that the parametric (sin-
gle) value involved is in the range 0.307 – 0.558. Under the 
REM, the 95%CI indicates that we can conclude, with 95% 
confidence, that the mean value of the effects in future studies 
of this type will tend to be a value in the range 0.273 – 0.668. 

Regarding the PI95%, it is interpreted concluding that, 
with 95% confidence, the effect of a future study of this type 
will be in the range -0.137 – 1.078, or in the range -0.137 – 
1.079, depending on whether or not we have used the 
Hartung-Knapp method. Note the difference between this 
conclusion and that of the CI95%. In the PI95% it is con-
cluded about the effect of a future intervention, while in the CI95% 
it is concluded about the average effect of future interventions. 

When it is important not to implement or recommend in-
terventions with effects that might be too small (or, of course, 
interventions that might be harmful), then it is appropriate to 
provide interpretations in that sense. We have already seen in 
the example in Figure 2 that we can do it using one-sided in-
tervals. For example, in this case we can conclude that the ef-
fect of the next intervention of this type will be, with 97.5% 
confidence, greater than -0.137. We can also calculate and in-
terpret other values, for example in the following ways: 
 
a) The effect of a future intervention of this type will be, with 

95% confidence, greater than (-1.771 is the value corre-
sponding to the 5th percentile of the t distribution with 13 
degrees of freedom): 

 
 0.4707 - 1.771·0.2813 = -0.027 

 
b) It can be estimated the probability of a positive effect of 

the next intervention. To do this, we calculate the value of 
the statistic as: 

 
(0 – 0.4707) / 0.2813 = -1.6733 

 
As in the Student t distribution with 13 degrees of freedom 

this value has a cumulative probability of .059, the desired 
probability is 1 – .059 = .941. 
 
c) If we consider that there is a minimum effect size, essential 

for it to be reasonable to apply the intervention, we can 
estimate the probability that such value will be reached 
and thus make better decisions. Suppose that in this ex-
ample the minimum size is δ = 0.25. We estimate the prob-
ability that the effect is at least that magnitude as follows. 
First we calculate the value of the statistic for that effect 
value: 

 
( 0.25 – 0.4707) / 0.2813 = -0.7846 

 
In the Student’s t distribution with 13 degrees of freedom 

this value has a cumulative probability of .2234. Therefore, the 
desired probability is 1 – .2234 = .7766. In summary, the esti-
mated probability that the effect is at least δ = 0.25 is equal to 
.7766. 
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Analyzes such as those just described may be especially 
appropriate when studying the role of moderators, especially 
categorical moderators. It is possible that under one of the 
categories the established minimum is very likely to be 
reached, while in another the probability is very low. Predic-
tion intervals can help make better decisions in the context of 
evidence-based practice. 

Three forest plot graphs are presented in Figure 4. All three 
show in their central part the estimates provided by the indi-
vidual studies in the previous example, with identical confi-
dence intervals at the study level. The difference between 
them is in the combined estimates they provide and their 
ranges. The first one presents the combined estimate under a 
FEM (the rhombus or diamond that appears below the last 
study; its vertical axis represents the combined value and the 
ends of its horizontal axis the limits of the CI95%). In the 
second and third, the rhombus also represents the CI95%, but 

under a REM (without the Hartung-Knapp adjustment). Nat-
urally, the CI95% under a REM is wider than under a FEM. 
In the third one, a dashed horizontal segment has been added 
to the rhombus, which represents the PI95%. In this third for-
est plot the different interpretation of the components is more 
easily noted. While the rhombus shows the range in which the 
central value of the effects would be in 95% of the cases, the 
segment shows the central range in which the parametric ef-
fect will be in 95% of the future individual studies belonging 
to the population of studies referred to in this meta-analysis. 
The amplitude of the rhombus is often incorrectly interpreted 
as reflecting the range of parametric effects. This error has 
sometimes been pointed out as one of the common or typical 
errors in meta-analysis (Borenstein, 2019a). Note that while 
the confidence interval is obtained with the standard error of 
the central value estimator, the prediction interval is obtained 
with the standard deviation of the parametric effects. 

 
Figure 4 
Forest plots with the studies in the example. The first with the results of a FEM. The second and third with a REM. The third includes the representation of the prediction interval 
as calculated by metafor with equation (15). 
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The prediction interval as an index of heterogene-
ity 
 
We already know the importance of reporting some es-

timate of the dispersion of effects in meta-analyses. Re-
porting the estimate of the mean effect size is not enough, 
even if the estimate is very precise (narrow confidence in-
terval). It is essential to accompany this estimate with some 
indicator of how heterogeneous the effects are. Especially 
in applied fields, good decisions can only be made if the 
expected variations in the effect are anticipated (Boren-
stein, 2019b). Several ways have been proposed to reflect 
this dispersion, but not all of them are correct nor are those 
that are correct equally effective. IntHout et al (2016) focus 
on this issue, reviewing the most used indices and evaluat-
ing their advantages and disadvantages. Finally, they pro-
pose using the prediction interval for this objective. We re-
fer the interested reader to that source, while here we sum-
marize the main conclusions. 

The specific variance, 2 , is not an appropriate index 
because it is not in the natural metric of the effect studied, 
while its square root may be, but only if the values have not 
been transformed for the calculations (e.g., logarithmic 
transformation of OR or Fisher's Z for correlations). The 
I2 index also does not reflect well the intended construct, 
since it is an index of the relative proportion of variation 
due to parametric effects (Higgins, & Thompson, 2002). 
As a consequence, a set of studies with very high sample 
sizes can give rise to a very high I2 index, even if there is 
not large heterogeneity among the effect sizes; and vice 
versa, a set of studies with small sample sizes with the same 
between-studies variance as the previous case, can give 
place to a low I2 index (Borenstein et al, 2017). Of course, 
the Q statistic is not useful in this sense either, since it is 
only a statistic to test whether the null hypothesis H0: 

2 0 =  can be hold (Huedo-Medina et al, 2006). We have 

already seen that the confidence interval should not be 
used to make this type of interpretation, since it only re-
flects the uncertainty in the estimate of the average effect, 
not the variations in the effects. On the contrary, IntHout 
et al (2016) propose the use of the prediction interval to eval-
uate and communicate the degree of dispersion of the true 
effects. The prediction interval reflects exactly what is in-
tended and is in the metric of the effect size index used. 
IntHout et al (2016) recommend, as we also do, routinely 
reporting prediction intervals in meta-analyses. It should 
be taken into account, however, that if the meta-analytic 
synthesis has been carried out after transforming the effect 
sizes of the studies (e.g., Fisher's Z for correlation coeffi-
cients, the natural logarithm of the odds ratio or of the risk 
ratio, or the logit function applied on prevalence), then the 
lower and upper limits of the prediction interval must be 
back-transformed to return them to the metric of the effect 
size index of interest (e.g., transforming them to coeffi-
cients correlation, odds ratios, risk ratios or prevalence). 
One should also be aware that the prediction intervals are 

obtained by estimating 2  and that these estimates are very 
imprecise with a low number of studies. Consequently, the 
interpretation of prediction intervals should also be taken 
with caution when they have been obtained with few stud-
ies (or even avoided with a very low number). 
 

Discussion and conclusions 
 
One of the main objectives of meta-analysis is the analysis 
of results oriented towards the synthesis of evidence. This 
synthesis serves to better understand the phenomena and 
the inter-relationships between the variables under study. 
But it should also serve to make better decisions in new 
research and new interventions. Prediction based on ac-
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quired knowledge (or evidence-based practice) reflects bet-
ter than anything else the role of meta-analysis in the ap-
plied world. 

In the REM a certain distribution model of the para-
metric effects, the normal model, has been assumed. This 
assumption may not be appropriate, but it is assumed for 
convenience, because other models are also arbitrary and 
because when the number of studies is reasonably high the 
approximation is quite good. Higgins et al (2009) discuss 
other distributions within the frequentist approach, as well 
as some alternatives within the Bayesian approach. 

In this article we have described what the prediction in-
tervals are, distinguishing them both from confidence in-
tervals (which refer to a different concept) and from their 

predecessor, credibility or validity intervals. We have high-
lighted the differences in their calculation and, above all, in 
their interpretation. We believe, following IntHout et al 
(2016) that prediction intervals should be reported much 
more frequently, and routinely when it comes to studies on 
interventions, a recommendation that is also made in other 
sources (e.g., Borenstein, 2019a, 2019b; Borenstein et al, 
2017, 2021; Higgins et al, 2019; Schmid et al, 2021). 
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Appendix 
 
R code used for the example in the text. Before running it, an SPSS file (.sav) must be created with the columns that appear in 
the left panel of the example table. The columns of the effect sizes and their variances are in the columns called “g” and 
“Var_g”, respectively. 
 
#EXAMPLE OF THE TEXT, WITH 15 STUDIES 
#Reading the data, in the file SPSS “Example_15_studies.sav” 
library(foreign)    #The package “foreign” must be already installed 
Data <- read.spss("Example_15_studies.sav ") 
 
#Loading the package “metafor” 
library("metafor") 
 
#Fixed effect model 
resFE <- rma.uni(yi=g, vi=Var_g, data=Data, method="FE") 
resFE 
 
#Random effects model, non-adjusted 
resRE <- rma.uni(yi=g, vi=Var_g, data=Data, method="REML") 
resRE 
 
#Random effects model, with Knapp-Hartung adjustment 
resRE_KH <- rma.uni(yi=g, vi=Var_g, data=Data, method="REML", test="knha") 
resRE_KH 
 
#Prediction interval, Random effects model non-adjusted 
predict(resRE) 
 
#Prediction interval, Random effects model with Knapp-Hartung adjustment 
predict(resRE_KH) 
 
#The three forest plot in figure 4 
forest(resFE) 
forest(resRE) 
forest(resRE, addpred=TRUE) 

 
 


