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Abstract: Children differ considerably in their mathematical attainment in 
primary school. This paper reviews studies indicating the importance of 
socioeconomic status and heredity before considering basic calculation, the 
addition of single digit numbers and corresponding subtractions. Basic cal-
culation proficiency varies with more general mathematical attainment. 
Delayed development of basic calculation proficiency is common in 
groups of children making slow progress in number whether or not they 
are also delayed in reading. Basic calculation might be important for 
mathematical development because it underpins arithmetic. Alternatively 
basic calculation might simply be a marker for mathematical development 
because the same factors affect its development as affect mathematical de-
velopment. These factors include specific numerical ones such as counting 
and general cognitive factors such memory functioning, processing speed, 
language and intelligence. Finally practice is suggested to be as relevant to 
explaining differences in mathematical development as it is for other areas 
of expertise.   
Key words: Mathematic competence; procedural knowledge; conceptual 
knowledge; basic calculation. 

 Título: ¿Por qué los niños difieren en su competencia matemática en la 
escuela primaria?. 
Resumen: Los niños difieren considerablemente en su competencia ma-
temática en la escuela primaria. En este trabajo se revisan estudios que in-
dican la importancia del status socioeconómico y la herencia antes de con-
siderar el cálculo básico, la adición de un solo dígito y las sustracciones co-
rrespondientes. La destreza en cálculo básico varía con el dominio mate-
mático más general. El retraso en el desarrollo de la destreza con el cálculo 
básico es común en los grupos de niños que avanzan lentamente en núme-
ros, si también muestran retraso en la lectura. Alternativamente, el cálculo 
básico podría ser un indicador importante para el desarrollo matemático, 
ya que los mismos factores que afectan a su desarrollo también lo hacen 
con el desarrollo matemático. Estos factores incluyen habilidades numéri-
cas específicas, tales como contar, y factores cognitivos tales como el fun-
cionamiento de memoria, velocidad de procesamiento, el lenguaje y la in-
teligencia. Por último, se sugiere que la práctica debe ser lo más pertinente 
para explicar las diferencias en el desarrollo matemático como lo es para 
otras áreas en el aprendizaje. 
Palabras clave: Competencia matemática; conocimiento procedimental; 
conocimiento conceptual; cálculo elemental. 

 
In 2000, a British 10-year-old, Adam Spencer, achieved a B 
grade, a good pass, in Mathematics A-level. This is remark-
able because A-levels are normally taken at the end of sec-
ondary school by 18-year-olds in the UK intending to pro-
gress to university. It is beyond the competence in  mathe-
matics required of UK primary teachers, which in turn is 
more than most of the population achieve by the time they 
finish secondary school. Although Adam’s achievement is 
unusual enough to have made the news, marked diversity in 
primary aged pupils’ attainment in mathematics is common 
enough to have been commented on in government reports 
(Cockcroft, 1982). 

Understanding this diversity can inform policies and 
practices in primary education.  Improving provision at pri-
mary level might even contribute to subsequent educational 
and economic success. Analysis of UK longitudinal data 
bases indicates some continuity between difficulties in pri-
mary school and difficulties in adulthood (Bynner & Par-
sons, 1997) and adults with numeracy difficulties in adult-
hood are at an economic disadvantage. For women with 
numeracy difficulties, these disadvantages are notable even 
when they have no literacy difficulties (Parsons & Bynner, 
2005).  

This review will not consider attempts to understand dif-
ferences in national achievement (e.g. Stevenson et al., 1990) 
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or even diversity across classrooms (Mortimore, Sammons, 
Stoll, Lewis, & Ecob, 1988).  This is because the differences 
between pupils in the same classroom seem substantially lar-
ger than any differences attributable to general culture or 
pedagogy. Instead the focus will be on factors that are sup-
posed to explain differences between individuals, starting 
with background factors, and then moving to specific num-
ber skills and finally the role of general cognitive factors.  

 
Socioeconomic status (SES) 
 
Many studies show that family SES is associated with differ-
ences in children’s educational achievement (Conger & 
Donnellan, 2007).  Although researchers are still not agreed 
as how to measure SES, most studies use one or more of the 
following indicators: household income, parental education, 
and occupational status. 

 SES differences seem particularly acute when lower SES 
families are at extreme economic disadvantage. This has led 
some to emphasize the part played by limited economic re-
sources in causing SES effects. Children in lower SES fami-
lies are more likely to live in overcrowded accommodation 
with limited facilities. Poor health, malnutrition, and lack of 
sleep are likely to interfere with learning at school.  

Another explanation of SES effects is that they reflect 
differences between families in parents’ aspirations for their 
children and consequent investments of time and resources. 
Higher SES parents are likely to have progressed further in 
their own education. Their educational achievements are 
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more likely to have enabled them to pursue their careers. 
They may be more determined that their children should 
also enjoy educational success. They may be better equipped 
to send their children to schools which value and deliver 
educational achievement.  

Another path through which SES can affect educational 
achievement is through psychosocial adjustment. Children 
from lower SES families are more likely to show poor ad-
justment in school which will have its own effects on 
achievement. 

Analysis of data from a longitudinal UK study indicated 
that at 7 and 11 years, material deprivation and parental in-
volvement largely accounted for the relation between SES 
and achievement (Sacker, Schoon, & Bartley, 2002). They 
also accounted for variation in psychosocial adjustment 
which was independently related to educational achieve-
ment. The kind of school the child attended had increasing 
effect from 7 to 11. 

Although SES is commonly considered to be an envi-
ronmental variable, studies of the effects of SES on 
achievement in biological families confound environmental 
and genetic influences. This is because at least some of the 
variation in SES may reflect variation in parental genetic 
characteristics. Some of this will be shared by their off-
spring. One way of trying to get around this is to compare 
SES effects in adoptive and biological offspring. Adoptive 
families do not, however, represent the full range of SES: 
adoption agencies typically screen for income above a cer-
tain level. Johnson, McGue, & Iacono (2007) used a method 
of adjusting for restriction of SES range in their study of 
adoptive and biological families. They concluded that at least 
part of the SES association with educational achievement 
was environmental.   

 
Genetics 
 
One way to assess the contribution of genetic variation to 
explaining differences between people is to compare twins.  
Monozygotic (MZ) twins are genetically identical and dizy-
gotic (DZ) twins are only as genetically similar as siblings 
who are not twins. On average, DZ twins will share 50% of 
the additive genetic variation and 25% of the dominance ge-
netic variation (Plomin, DeFries, McClearn, & McGuffin, 
2001).  

Common and simple forms of estimating heritability 
only consider additive genetic effects. One method is to 
double the difference between the correlations for MZ and 
DZ pairs.  Another method is to use the variance covariance 
matrices to estimate parameters for additive genetic influ-
ence (A), shared environmental influence (C), and non-
shared environmental influence (E). This also yields confi-
dence intervals for the parameters. Comparing the fit of 
models that include all three terms (A, C, and E) with ones 
that omit A or C is a way of identifying the most parsimoni-
ous model that can account for the data.  

Although several studies have compared MZ and DZ 
twins’ performance on mathematics tests the samples are 
usually small and so the confidence limits are broad. Also 
some samples featured children varying considerably in age. 
This meant that the abilities assessed varied and it ignored 
the possibility that genetic variation accounts for differing 
amounts of variation at different ages. A large cohort study 
such as the Twins Early Development Study (TEDS) can 
overcome these problems. TEDS consists of twins born in 
the United Kingdom from 1994 to 1996.  It is a very sub-
stantial pool of families and children and has allowed large 
sample studies of the similarities between MZ twins and DZ 
twins.  

Three studies of variation in primary mathematics have 
featured TEDS samples (Kovas, Harlaar, Petrill, & Plomin, 
2005; Kovas, Petrill, & Plomin, 2007; Oliver et al., 2004). 
Two used teachers’ ratings of children’s mathematics at-
tainment at 7 years (Kovas et al., 2005; Oliver et al., 2004). 
Oliver et al. (2004) asked teachers to rate the children on 
three aspects of the primary maths curriculum. As the rat-
ings were very highly correlated, I shall only describe the re-
sults for a composite derived from all three. The overall cor-
relation between MZ twins was .74 and between DZ twins 
was .43, indicating heritability of 62 %. This was based on 
about 4000 children, about 1000 of each type of twin pair.  
A separate analysis of the children receiving the lowest 15% 
of ratings indicated similar results: .72 correlation between 
MZ twins, and .40 between DZ twins. Some twin pairs were 
in the same class and so rated by the same teacher. Others 
were rated by different teachers. This had a marked effect 
on the absolute level of correlation between ratings. MZ 
twin correlations were .83 for children in the same class and 
.57 when they were rated by different teachers. DZ twins in 
the same class correlated .51 but in different classes this 
dropped to .25. 

Kovas et al. (2005) examined a slightly different sample 
of TEDS children to look at the relation between mathemat-
ics, reading, and intelligence. Teacher ratings of reading were 
supplemented by a reading test administered over the tele-
phone. Intelligence was assessed over the phone too using 
subscales of an omnibus test.  They concluded that most of 
the genetic variance in mathematics is common to that for 
reading and to a lesser extent, intelligence. This is broadly 
consistent with the generalist genes hypothesis (Plomin & 
Kovas, 2005).  

Kovas et al. (2007) analysed data from about 1600 10-
year-olds in the TEDS sample on web-based tests of five as-
pects of maths that were identified in the UK primary cur-
riculum. The correlations between MZ twins on these varied 
from .51 to .63. Those for DZ ranged from .29 to .46. Esti-
mates of heritability for the different aspects ranged from 
34% to 48%. This is notably lower than the estimates de-
rived from teachers’ ratings in Oliver et al. (2004).  This time 
the correlations differed little according to whether children 
were in the same classrooms (average MZ correlation .58, 
average DZ correlation .38) or different classrooms (average 
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MZ correlation .57, average DZ correlation .33). Analyses of 
the relations between aspects indicate that much of the ge-
netic variation was shared, i.e. the same genes largely af-
fected all five aspects. This is also consistent with the gener-
alist genes hypothesis. 

In discussing their results Kovas et al. (2007) take care to 
point out that   substantial heritability does not mean that 
mathematical achievement cannot be changed.  They resist 
the conclusion that differences in intelligence are responsible 
for the covariation of reading and mathematics on the 
grounds that what intelligence tests measure is itself little 
understood. 

They also acknowledge that estimates are specific to 
samples and historical contexts. Even a sample as large as 
theirs is not sufficient to determine whether there are spe-
cific genetic factors for the different tests. Clearly genetic 
studies of this sort are extremely demanding in terms of 
sample size.  
 
Basic calculation  
 
Important as these studies of SES and genetics are, they do 
not take us very far in understanding variation. They rely on 
standardized assessments. Standardized assessments do not 
map onto any specific cognitive processes or strategies, even 
when these tests are differentiated according to curriculum 
relevant aspects (e.g. Kovas et al., 2007). The lack of ground-
ing in the psychology of number development makes varia-
tion in standardized maths tests as poorly understood as 
variation in performance on omnibus intelligence tests. It is 
possible that standardized tests inflate the effects of SES be-
cause they use story problems (calculation problems embed-
ded in verbal contexts), which may place lower SES children 
at a particular disadvantage (Cooper & Dunne, 2000; Jordan, 
Huttenlocher, & Levine, 1992).  

One candidate for explaining differences on maths tests 
for primary children is proficiency in basic calculation, the 
addition of single digit numbers and the corresponding sub-
tractions. It shows substantial covariation with general 
arithmetic ability (Durand, Hulme, Larkin, & Snowling, 
2005; Geary & Brown, 1991; Hecht, Torgesen, Wagner, & 
Rashotte, 2001; Siegler, 1988) and children selected for low 
attainment in mathematics consistently show deficiencies in 
basic calculation (Geary, Hoard, Byrd-Craven, & DeSoto, 
2004; Jordan, Hanich, & Kaplan, 2003; Landerl, Bevan, & 
Butterworth, 2004).  

The course of development in basic calculation is well 
established and is the focus of a series of models increasing 
in sophistication (Shrager & Siegler, 1998; Siegler & Shipley, 
1995; Siegler & Shrager, 1984). Children initially solve basic 
calculation problems such as “How much is 5 and 2?” by us-
ing retrieval of known combinations, guessing, or backup 
strategies involving counting.  In the early years of primary 
school their knowledge of combinations increases and they 
develop more economical back up strategies, such as min, 
counting on from the larger addend, for addition, and, for 

subtraction, counting down from the subtrahend to the minu-
end  or, less commonly, counting up from the minuend to the 
subtrahend (Thompson, 1999). They also make increasing 
use of derived-fact strategies, solving unknown combinations 
by using known combinations in conjunction with arithmetic 
principles, e.g. solving 8 - 4 by using the knowledge that 4 + 
4 is 8 in conjunction with understanding the inverse relation 
between addition and subtraction, and rules, e.g. solving 5 - 5 
by using inversion. Each strategy used increases in accuracy 
and speed (Siegler, 1987).  

The main components of proficiency are accurate 
knowledge of combinations and mastery of efficient back up 
strategies. Knowledge of combinations enables solutions 
that are typically faster and more accurate than those using 
other strategies. However increasing reliance on retrieval 
only partly explains development in proficiency: back up 
strategy solutions become faster too. 

Several studies have examined basic calculation charac-
teristics informed by models of basic calculation develop-
ment. For example Geary and Brown (1991) drew on Siegler 
and Shrager’s (1984) strategy choice model. In this model 
solution by retrieval is tried first. If no answer is retrieved 
that meets a specified confidence level the child resorts to a 
back up counting strategy.  Answers to problems have dif-
ferent associative strengths. If the distribution is particularly 
peaked with one answer having much greater associative 
strength than others then that is the answer that will be gi-
ven. 

Geary and Brown (1991) compared a group of children 
identified as mathematically gifted with normal and mathe-
matics disabled groups. All groups were about 10 years old 
though the gifted group were younger than the mathematics 
disabled group. Despite this the gifted group showed strat-
egy characteristics resembling those of much older children 
and the mathematics disabled group resembled younger 
children. The gifted group relied on retrieval more often 
(gifted, 88%; normal, 61%; mathematics disabled, 44%). 
When they retrieved answers they were more accurate 
(gifted, 98%; normal, 89%; mathematics disabled, 91%). 
When they used a counting strategy they invariably used the 
more efficient min strategy and were faster. Indeed their es-
timated implicit counting rate was within the adult range. 

Why might these differences arise?  It might be that 
gifted children have more experience of solving problems. 
Through practice they increase speed and accuracy of back 
up strategy execution. By accurately executing back up 
strategies they increase the strength of association between 
correct solutions and associated problems. This then extends 
the range of problems for which retrieved answers can be 
relied on. Another consequence of practice is that they learn 
more from solving problems.  For the child to learn from 
problem solving they must remember the problem and the 
solution. If by the time they have achieved a solution they 
have forgotten what the problem was then this is unlikely to 
be beneficial.  Remembering both the problem and its solu-
tion is more likely with shorter solution times. Using more 

anales de psicología, 2008, vol. 24, nº 2 (diciembre) 



Why children differ in their mathematical attainment at primary school                                                                           183 

efficient counting strategies and counting faster enables 
shorter solution times. 

Many studies have substantially replicated the characteri-
sation provided by Geary and Brown (1991).  An important 
extension is the demonstration of stylistic differences which 
can be interpreted in Siegler and Shrager’s (1984) model as 
differences in confidence criteria. Siegler (1988) identified 
three groups in a sample of first grade children from middle 
income families by conducting a cluster analysis of their ba-
sic calculation characteristics: good students, perfectionists, 
and not-so-good students. Good students were faster than 
not-so-good students when they used retrieval and when 
they used back up strategies. They were also more accurate 
on both strategy types and used retrieval more often. Perfec-
tionists were faster and more accurate than not- so-good 
students on both strategy types but they used retrieval less 
often than the other groups. Perfectionists and good stu-
dents did not differ on achievement measures. Both groups 
outperformed the not- so- good students. Perfectionists can 
be seen as setting higher confidence criteria for relying on 
retrieved answers.  The three-way classification has been 
replicated in two further studies.  

Kerkman and Siegler (1993) retested a group of children 
from lower-income families after six months. They found 
that all children initially classified as good students remained 
good, most perfectionists were still perfectionists but some 
had migrated to the good category. The not-so-good stu-
dents were mixed: some were now good, others perfection-
ists and some were still not-so-good. Consistent with the 
model, initial accuracy on back up strategies predicted later 
retrieval frequency and accuracy. 

Kerkman and Siegler (1997) reported data from a larger 
sample of children from both lower and middle income 
families. Once again the perfectionists and good students 
did not differ on overall mathematics achievement measures 
and both scored higher than the not-so-good students. 
Again the perfectionists’ infrequent use of retrieval seemed 
due to caution rather than lack of knowledge. 

More recent models of strategy development have in-
creased their scope and power. The latest model (Siegler & 
Shrager, 1998) incorporates strategy discovery as well as fea-
tures that learn about strategies and problem types, not just 
the specific problems solved. The strategies that children 
seem to invent for themselves are legitimate and conform to 
a goal sketch. A goal sketch represents conceptual knowl-
edge at some level which may not be verbalisable or amena-
ble to introspection. Siegler and Crowley (1994) explored 
preschool children’s judgments of strategy use as a means of 
assessing goal sketches. Children who could add but did not 
use min judged min strategy use to be smarter than quick ille-
gitimate strategies and tended to judge min to be smarter 
than their own strategy.  This method of assessing concep-
tual knowledge is quite different from the ways other re-
searchers have used. They have been more concerned with 
assessing children’s knowledge of arithmetical principles. 

All the economical counting strategies implicitly assume 
arithmetical principles. The use of min, counting on from the 
larger addend even when it is not the first addend, implicitly 
assumes commutativity- the irrelevance of addend order to 
the sum, i.e. ‘a + b = c’ implies ‘b + a = c’. The use of counting 
up to solve a subtraction problem, e.g. solving 6 -4 by count-
ing up from 4 to 6, implicitly assumes the inverse relation 
between addition and subtraction i.e. ‘a + b = c’ implies ‘c - a 
= b’. Counting down to solve a subtraction, e.g. solving 6 – 
4 by counting down from 6 to 4, implicitly assumes the 
complementarity of subtraction, i.e. ‘c – b = a’ implies ‘c – a 
= b’.  Researchers have used a variety of methods to assess 
children’s knowledge of these principles. One method is to 
embed pairs of conceptually related problems in a set of cal-
culation problems and leave it to the child to point out the 
connection (Russell & Ginsburg, 1984). Another is to pre-
sent children with the answer to a large number problem 
that is either beyond their ability to solve (Dowker, 1998) or 
beyond their ability to solve rapidly (Jordan et al., 2003) and 
then ask them to solve a related problem.  Another way is to 
ask children to judge whether a puppet could use a solved 
problem to work out the answer to another (Canobi, 2004).  

Although some research reports associations between 
knowledge of arithmetic principles and strategy characteris-
tics (Canobi, 2004, 2005; Cowan & Renton, 1996) and chil-
dren with mathematics difficulties show deficits in both 
(Jordan et al., 2003), the evidence base is limited: only some 
aspects of conceptual knowledge have been studied, and the 
nature of the relationship is unclear. Conceptual knowledge 
and strategies could be related in one of three ways: concep-
tual knowledge may lead to strategy development, develop-
ment of strategies may enhance understanding of principles, 
or developments in either may lead to developments in the 
other (Rittle-Johnson, Siegler, & Alibali, 2001).   

As the evidence of an association is based on correla-
tions rather than interventions, the link between strategy and 
principle could also be due to other factors. These other fac-
tors may be specific number factors or more general cogni-
tive factors. 

A plausible candidate for a specific number factor is 
counting.  

 
Counting 
 
Proficient counting may be relevant to basic calculation in 
several ways. Firstly, common back up strategies involve 
counting. More fluent knowledge of the count sequence will 
facilitate more accurate and rapid execution of strategies, as 
well as enhancing the probability of remembering the prob-
lem and the solution.  The shift from overt counting to si-
lent counting is an important step forward: recall the adult-
like implicit counting rates of the gifted students in Geary & 
Brown (1991). Deficits in counting fluency have been ob-
served in children with arithmetic difficulties (Geary, 1990; 
Hitch & McAuley, 1991; Landerl et al., 2004) and speed of 
counting varies with more general measures of arithmetic in 
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children showing average and above average attainment (Le-
Fevre et al., 2006). 

Secondly, more efficient counting strategies involve 
counting on or down from specific numbers. When children 
first learn to count, they are unable to do this. In the ‘un-
breakable chain’ phase (Fuson, Richards, & Briars, 1982) 
children always start counting from one and seem unable to 
continue from other points. This would limit them to the 
most laborious of counting strategies. Although the basis for 
the development of more flexible counting is contested (Fu-
son, 1988), the consequences for calculation are clear. Our 
previous work (Donlan, Cowan, Newton, & Lloyd, 2007) 
found inaccuracies in counting on and down were strongly 
associated with errors in basic calculation. 

Thirdly, through counting children master the number 
word sequence. There is a lag between being able to recite 
the number word sequence and having insight into the nu-
merical relationships it embodies. For example, Siegler & 
Robinson (1982) found knowledge of the relative magnitude 
of single digit numbers seems to follow counting to ten by 
about two years. Knowledge of relative magnitude might be 
developed through knowledge of the count sequence, i.e. 
learning that numbers that come later in the count sequence 
are larger than earlier numbers, though it may be further en-
hanced through the development of a central structure for 
whole numbers that includes a mental number line (Griffin, 
Case, & Siegler, 1994).  

In adults and older children, there is evidence for some 
basis for relative magnitude other than counting knowledge: 
adults and older children show a distance effect. They are 
faster to judge relative magnitude the greater the difference 
between the numbers, e.g. they are quicker to judge that 
eight is more than four than to judge that four is more than 
three. If going through the number word sequence was the 
basis for relative magnitude judgments then faster times 
would be expected for closer numbers. 

Knowledge of relative magnitude is presupposed in the 
min strategy for addition and implicated in retrieval of com-
binations (Butterworth, Zorzi, Girelli, & Jonckheere, 2001). 
Single digit magnitude comparison speed associates strongly 
with basic calculation proficiency (Durand et al., 2005) and 
children with arithmetic difficulties are slower to compare 
magnitudes (Landerl et al., 2004).  

Another way in which counting development may sup-
port development of basic calculation is through enhancing 
appreciation of number patterns. These may play a role in 
developing strategies and knowledge of combinations 
(Baroody, 1999). Problems such as n ± 1, 1 + n, and n – (n – 
1) can be seen as embodying simple rules. Appreciating the n 
+ 1 and 1 + n rules may play a part in developing the min 
strategy.  

Finally proficient counting involves understanding 
counting principles. Understanding of counting principles, as 
indexed by discrimination of erroneous counts from ortho-
dox and unconventional legitimate counts, also varies with 

arithmetical proficiency (Geary et al., 2004; LeFevre et al., 
2006).   

In a study tracking children from the beginning of kin-
dergarten, Jordan, Kaplan, Locuniak, and Ramineni (2007) 
administered a number sense battery six times and used a 
standardized test to assess maths achievement after about 18 
months. The battery included a subscale assessing counting 
skill and principles and another assessing number knowl-
edge. The latter included items assessing number sequence 
knowledge and relative magnitude. Both predicted variation 
in maths achievement but the correlations with number 
knowledge were greater. The number knowledge correla-
tions at different time points with mathematics achievement 
ranged from .52 to .57. The correlations with the counting 
subtest varied between .28 and .37. The whole number sense 
battery was even more successful in predicting variation in 
achievement, correlations ranging from .66 to .73. The other 
subscales that contributed to the battery assessed knowledge 
of number combinations, ability to solve story problems, 
and performance on nonverbally presented calculation prob-
lems. 

The importance of the skills captured by the number 
sense battery is indicated both by the overall strength of the 
relationship and the finding that variables such as family in-
come, gender and reading ability did not explain any more of 
the variation in achievement.  Even though it is a predictive 
relationship it is still just a correlation and so it is possible 
that any of the relationships between number sense, count-
ing proficiency, basic calculation and achievement are due at 
least in part to other factors that influence them all. Such 
factors include general cognitive factors. 

 
General cognitive factors 
 
Reading and mathematics achievement covary substantially. 
Most children who have difficulties with mathematics have 
difficulties with reading too. Although some children with 
reading difficulties are unimpaired in arithmetic, and some 
children with arithmetical difficulties have no reading diffi-
culty, children who show low attainment in both have 
greater impairments in number than those with just impaired 
number development (Jordan et al., 2003). 

This indicates the importance of factors common to the 
development of both.  Candidate cognitive factors include 
working memory, processing speed, language skills, and in-
telligence.  

Working memory is a very plausible candidate as it has 
connections with learning and is involved to varying degrees 
in most cognitive tasks, such as listening, reading, reasoning, 
and arithmetic. The outline model proposed by Baddeley 
and Hitch (1974) has provided a framework for research. 
This model consists of three components: the phonological 
loop, the visuospatial sketchpad, and the central executive. 
The functioning of all components improves with age 
(Gathercole, 1998) and variation in working memory tasks 
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correlates with educational achievement (Gathercole & 
Pickering, 2000a, 2000b; Hitch, Towse, & Hutton, 2001).  

The phonological loop is a temporary storage system for 
sounds. Its level of functioning is assessed by tasks in which 
the child reproduces an arbitrary set of words, nonwords, or 
numbers in the same order as presented. The forward span 
is the length of the longest sequence correctly reproduced 
on most trials. Spans relate to variation in reading. Phono-
logical loop functioning affects vocabulary acquisition (Jar-
rold, Baddeley, Hewes, Leeke, & Phillips, 2004). Although 
some have suggested a role for the phonological loop in 
counting and calculation, the evidence of variation in phono-
logical loop functioning with mathematics achievement is 
mixed. Some studies have reported children with mathe-
matical disabilities have shorter forward spans than typically 
developing children (e.g. Geary, Brown, & Samaranayake, 
1991), even when the groups are matched on reading ability 
(Hitch & McAuley, 1991), but others have not (Geary, 
Hoard, & Hamson, 1999).   

The visuospatial sketchpad is a temporary storage system 
for visual and spatial material. The Corsi blocks task is one 
method of assessing its functioning. In this task the child 
sees a board with a set of identical blocks haphazardly ar-
ranged on it. A number of blocks are touched in a particular 
order and the child’s task is to touch the same blocks in the 
same order. The Corsi span is the longest sequence reliably 
reproduced. Roles have been proposed for the visuospatial 
sketchpad in mental and written arithmetic, and in solving 
story problems.  Baddeley (2003) suggests its role in reading 
may be in keeping track of position on the page. If children 
learnt combinations from tables of facts then it would be in-
volved in learning them.  Some studies find differences in 
Corsi span between mathematics difficulty and typically de-
veloping groups (e.g. McLean & Hitch, 1999), others do not 
(e.g. Bull, Johnston, & Roy, 1999).  

The central executive is involved in control of attention, 
switching retrieval strategies, and activating information in 
long-term memory. Tasks that assess it involve both proc-
essing and storage of information.  The simplest test is back-
ward digit span –recalling a set of digits in the opposite 
order to that heard. Other tests include listening span where 
a child must make judgments about a series of sentences and 
subsequently recall the last words of each sentence, and 
counting span, in which the child must count the dots on 
each of a set of pictures and subsequently recall the number 
on each picture. Of all the working memory components, 
central executive assessments tend to correlate the highest 
with variation on number tasks (e.g. Cowan, Donlan, New-
ton, & Lloyd, 2005), though this can vary with group (Henry 
& MacLean, 2003). Using other measures of executive func-
tioning, some studies have been able to account for more 
variation (Bull et al., 1999; Bull & Scerif, 2001). 

If working memory functioning is important for the de-
velopment of both reading and number then one might not 
expect to find much covariation between measures of work-
ing memory and number skills after controlling for reading 

achievement. Although Bull and Johnston (1997) did find 
some, its contribution was eliminated when two other meas-
ures were included. These other measures were of speed: 
rapid automatized naming (RAN) and processing speed.   

Performance on RAN tasks, which require children to 
name familiar items such as letters or numbers as fast as they 
can, has emerged as one of the best predictors of reading 
(Powell, Stainthorp, Stuart, Garwood, & Quinlan, 2007). Al-
though some consider RAN tasks just assess an aspect of 
phonological processing (e.g. Hecht et al., 2001), Powell et al. 
found reading impairment in children who showed RAN 
without any accompanying phonological deficits. The mod-
els that best accounted for the data in their large scale study 
of 7- to 10- year-olds treated RAN as separate from phono-
logical awareness and phonological memory.  

One can construe RAN tasks as assessing general effi-
ciency in retrieving information from long term memory. If 
that is what they do, then variation in RAN might account 
for some variation in constituents of basic calculation such 
as retrieval of number facts and counting fluency. Hecht et 
al. (2001) found RAN measures uniquely accounted for 
growth in mathematics achievement in the early grades of 
primary school even when reading skills were controlled.  

A different view of RAN tasks is that variation in them 
reflects differences in general processing speed (e.g. Kail, 
1991).  Although speed of counting and strategy execution 
have been mentioned above as contributing to variation in 
calculation,  differences in these speeds can be explained in 
two ways. One is that slower speeds result from less experi-
ence: after all even adults increase their speed with practice 
on most cognitive tasks. This is the idea one source of varia-
tion in speed is task specific. The other explanation is that 
there are general differences in processing speed that may 
account for variation in speed between older and younger 
children independently of task specific knowledge and prac-
tice. Whereas Bull and Johnston (1997) found general proc-
essing speed was the strongest predictor of arithmetic profi-
ciency and explained away the associations with working 
memory and RAN, others have not: Hitch, Towse, and 
Hutton (2001) found working memory to be a stronger pre-
dictor than processing speed. Durand et al. (2005) did not 
find any independent contribution of processing speed 
though it was related to single digit magnitude comparison 
speed which was important. General processing speed did 
not account for the relation between RAN and reading in 
the study by Powell et al. (2007). 

Variation in language skills is likely to account for differ-
ences in children’s number skills and general maths achieve-
ment as well as reading.  Counting and in particular 
mastering the number word sequence draws on a child’s lin-
guistic resources. Story problems make demands on chil-
dren’s language comprehension, sociocultural knowledge, 
and verbal reasoning.  

Children’s linguistic resources are also likely to influence 
their ability to benefit from instruction at home and at 
school, whether it is in understanding what people say, con-
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tributing to discussion, or asking questions. A problem for 
researchers trying to assess the importance of linguistic skill 
is that many measures of it are considered to be measures of 
intelligence. So are the associations between verbal measures 
and number skills a reflection of the importance of language 
or the importance of intelligence? 

Children with specific language impairment (SLI) might 
seem to be a natural group to separate the effects of lan-
guage impairment from deficits in intelligence: by definition 
they show oral linguistic impairments in combination with 
intelligence in the normal range, as assessed by nonverbal 
reasoning tests such as Raven’s Coloured Progressive Matri-
ces (Raven, Raven, & Court, 1998). The classic profile of a 
child with SLI is to show deficits in both phonological proc-
essing and understanding of language. They are known to 
have a substantial risk of reading difficulty. In the US ap-
proximately 40% of children with SLI will meet the criteria 
for reading difficulties (Catts, Fey, Tomblin, & Zhang, 
2002). In contrast only 8% of typically developing children 
with similar nonverbal ability will do so. 

Our recent studies compared three groups of children: 
an SLI group aged between 7 and 9 years, an age control 
group (AC) matched for chronological age and nonverbal 
reasoning, and a language control group (LC) matched with 
the SLI group on language comprehension (Cowan et al., 
2005, in press; Donlan et al., 2007) and age-adjusted nonver-
bal reasoning. The LC group were on average two years 
younger than the other groups. Comparisons of the chil-
dren’s knowledge of the number word sequence and num-
ber combinations, of their basic calculation and story prob-
lem proficiency, and their ability to seriate and use ordinal 
number, all showed the SLI group to be indistinguishable 
from the much younger LC group and very much below the 
level of their peers, the AC group. On most other tasks SLI 
group performance fell between the AC and LC groups.  
Only on a test of commutativity using arbitrary symbols did 
the SLI group resemble the AC group. 

Striking as the differences were, they are not unequivocal 
evidence of the importance of language skills: the SLI group 
also differed from the AC group in working memory. We 
conducted multiple regression analyses to control statistically 
for other characteristics. These analyses suggested that lan-
guage comprehension, nonverbal reasoning, and working 
memory functioning varied in their importance for different 
number skills but the amounts of variance uniquely ac-
counted for were small even though overall variance ac-
counted for was moderate to large (R2s between .31 to .75). 
This is because the different factors correlate with each 
other.  

More generally, the relationships between different cog-
nitive factors make it difficult to discriminate between them 

empirically. Studies that leave some factors out risk inflating 
the importance of those included. Even if all factors were 
included, the confidence limits for individual coefficients are 
likely to be wide due to common sample sizes which fall far 
short of those in cohort studies.  

Another issue is that in theory too, cognitive factors are 
interrelated. Working memory functioning should affect per-
formance on tests of language, processing speed, and rea-
soning. Conversely linguistic knowledge and processing 
speed are claimed to influence performance on working 
memory tests. Working memory, language, and speed of in-
formation processing have formed subscales of omnibus in-
telligence tests. Just what ‘purer’ intelligence tests such as 
Raven’s assess that is separate from working memory is dis-
puted (Ackerman, Beier, & Boyle, 2005; Colom, Rebollo, 
Palacios, Juan-Espinosa, & Kyllonen, 2004; Engle, Tuholski, 
Laughlin, & Conway, 1999). 

 
In conclusion 
 
The relation between basic calculation and more general 
proficiency might be explained in several plausible ways. 
Proficiency in basic calculation may provide an essential 
platform for further arithmetic. As most of current primary 
mathematics is arithmetic, children who are insecure in basic 
calculation are ill equipped to progress. That may be relevant 
for understanding below average progress but it does not 
seem very likely to be the answer for explaining differences 
between children making above average progress and more 
typical children.  

The covariation with other factors explanation is also 
plausible: factors that cause children to differ in basic calcu-
lation development will also cause them to differ in more 
general mathematical development.  General cognitive fac-
tors have better prospects for accounting for variation 
across the range but it should be remembered that the 
amount of variation in mathematics or simple calculation 
that has been accounted for is limited. This may be because 
of defects in measurement quality or omission of relevant 
variables.   

One relevant variable that is typically omitted is experi-
ence. By default amount of experience is assumed to be 
equal but this is unlikely to be true. Differences in experi-
ence in the form of practice is likely to play a major part in 
explaining differences in children’s achievement in 
mathematics, just as it does in adult expertise (Ericsson, 
Roring, & Nandagopal, 2007). As Adam Spencer said when 
being interviewed about his A-level success “I don’t live a 
completely strict life, but I do work each day.” 
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