Endophytic fungal association in roots of exotic medicinal plants cultivated in the Nilgiris (Western Ghats, Peninsular India)

Nagarajan Bharathy, Srinivasan Sowmiya, Shanmugam Karthik, Ravichandran Koshila Ravi, Mayakrishnan Balachandar & Thangavelu Muthukumar

Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamilnadu, India.

Resumen

Correspondence R.K. Ravi E-mail: koshilaravi@gmail.com Received: 30 January 2020 Accepted: 28 June 2021 Published on-line: 13 December 2021 Asociación de hongos endofíticos en raíces de plantas medicinales exóticas cultivadas en Nilgiris (Western Ghats, India Peninsular)

Algunos microbios beneficiosos del suelo ayudan al establecimiento y crecimiento de plantas medicinales exóticas. Evaluamos la presencia y el estado de la asociación de endófitos de raíces [hongos micorrízicos arbusculares (AM) y hongos endofíticos septados oscuros (DSE)] en diez especies de plantas medicinales exóticas cultivadas en Nilgiris (Ghats Occidentales). Los hongos AM colonizaron todas las especies examinadas y ocho plantas tuvieron la co-ocurrencia de hongos DSE. El alcance de las variables de los hongos endofíticos y las características del pelo radicular difirieron significativamente entre las plantas. Se identificaron seis morfotipos de esporas de hongos AM. Por lo tanto, este estudio indicó la asociación de plantas medicinales exóticas con hongos nativos AM y DSE que podrían explotarse para promover el crecimiento y aumentar la producción de metabolitos secundarios en estas especies de plantas.

Palabras clave: Micorrizas arbusculares; Hongos endofíticos septados oscuros; Pelo radicular; Morfotipo de esporas

Abstract

Some soil beneficial microbes help in the establishment and growth of exotic medicinal plants. We evaluated the presence and status of root endophyte [arbuscular mycorrhizal (AM) fungi and dark septate endophytic (DSE) fungi] association in ten exotic medicinal plant species cultivated in the Nilgiris (Western Ghats). The AM fungi colonized all the examined plant species, and eight plants had the co-occurrence of DSE fungi. The extent of fungal endophyte variables and root hair characteristics significantly differed among the plants. Six AM fungal spore morphotypes were identified. Thus, this study indicated the association of exotic medicinal plants with native AM and DSE fungi which could be exploited to promote growth and increase secondary metabolite production in these plant species.

Key words: Arbuscular mycorrhiza; Dark septate endophytic fungi; Root hair; Spore morphotype.

Introduction

Medicinal plants are widely recognized with high healing activity worldwide. According to the World Health Organization (WHO), 80% of the world's people depend on traditional medicine for their primary healthcare needs (Ahvazi et al. 2012). Medicinal plants play a dynamic role in traditional medicines (Kumarasamyraja et al. 2012) as well as in trading commodities (Vasisht et al. 2016). Due to their popularity and application, there is a scarcity and also increasing demand for medicinal plants and their products (Nishteswar 2014). Also, the exploitation of medicinal plants growing in nature leads to the loss of natural populations that may ultimately lead to their extinction. This has promoted the cultivation of native and exotic medicinal plants to meet the demand for raw materials in the pharmaceutical sector.

In the current scenario, different systems of medicine are practiced worldwide in addition to their place of origin. This has greatly increased the demand for raw materials for drug preparation and many medicinal plants are cultivated apart from their native regions to increase their availability (Alencar et al. 2014, Medeiros et al. 2017). The medicinal plants that are introduced into newer regions other than their native habitats by humans are called exotics. Many exotic medicinal plants have the potential to grow and thrive in different ecological regions (Alencar et al. 2014, Nguanchoo et al. 2019). Successful growth and survival of exotic medicinal plants into an introduced area may be aided by several microorganisms that are present in the root and rhizosphere soil (Rajkumar et al. 2012, Zubek et al. 2012). Among the soil microbiome, fungal endophytes have a critical role in plant growth and health.

Endophytic fungi are non-pathogenic symbiotic soil fungi that provide habitat fitness to genetically distant host plants and also confer tolerance against various abiotic stresses (Begum *et al.* 2019, Diagne *et al.* 2020). Endophytic fungi influence the dynamics of the plant community through many mechanisms like nutrient uptake by plants, nutrient redistribution, and interplant competition (McGee *et al.* 2019). Among the different types of endophytic fungal symbiosis, arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungal symbioses are of great ecological importance.

The ubiquitous AM fungi belonging to the phylum Glomeromycota (Terdosoo et al. 2018) colonize almost 72% of the plant species growing in the natural ecosystem (Brundrett & Tedersoo 2018). The AM symbiosis aids in plant growth by increasing the availability as well as translocation of various nutrients especially phosphorous (P) (Rouphael et al. 2015). The AM fungi form various structures like hyphae, arbuscules, hyphal and arbusculate coils, and vesicles in plant roots (Muthukumar et al. 2016, Muthuraja & Muthukumar 2019). In addition, there exist an arbusculeforming fungus known as fine root endophyte (FRE) belonging to the subphylum Mucoromycotina of Mucoromycota (Orchard et al. 2017) which also co-occur in roots along with other fungal endophytes. Moreover, there is a great difference in the distribution or pattern of AM fungal structures in plant roots (Muthukumar et al. 2016). The morphology of AM fungi chiefly falls into major types based on the colonization patterns: Arum-, Paris- and intermediate types. The Arum-type is represented by intercellular hyphae and arbuscules, on contrary, Paris-type is characterized by intracellular linear hyphae, hyphal coils, and arbusculate coils. The intermediate type of AM morphology shares both the characters of Arum- and Paris- types (Dickson 2004).

In addition to the widely associated AM fungi, roots of many plants especially the non-mycorrhizal plants are colonized by septate conidial fungi with melanized hyphae that forms moniliform or microsclerotia within plant roots known as DSE fungi (Peterson et al. 2008). They are worldwide in distribution and interact with other soil biota both functionally and ecologically (Mayerhofer et al. 2013). The DSE fungi often co-occur with different types of mycorrhizal fungi and are reported in several aromatic plants, crops and horticultural plants (Muthukumar et al. 2018, Piszczek et al. 2019). Like AM fungi, DSE fungi also benefit plants by improving growth, nutrient uptake, and tolerance against different environmental stresses (Vergara et al. 2018, Farias et al. 2020).

Being a crucial element of soil microbial community in the terrestrial environment, both AM and DSE fungi could be an important characteristic in the exotic plant process by promoting local adaptation, decrease environmental stresses, and their influence on plant competition (Gucwa-Przepióra *et al.* 2016). Moreover, investigation on mycorrhizal status and identification of AM fungal spores associated with them could be useful in the formulation of bioinoculants for cultivating exotic medicinal plants (Zubek et al. 2012). Though the mycorrhizal status of many medicinal plants has been investigated (Muthukumar et al. 2006, Sharma & Jha 2012, Safari Sinegani & Yeganeh 2017), reports on beneficial endophyte fungal association in the cultivated exotic medicinal plants species are very limited. Moreover, only ~1% of the global medicinal plants have been investigated in terms of their association with soil-borne fungi (Piszczek et al. 2019). Therefore, the present study was undertaken to examine the occurrence and extent of AM and DSE fungal association, AM colonization patterns, and diversity of AM fungi associated with ten cultivated exotic medicinal plant species belonging to different families. In addition, the root hair morphology of exotic medicinal plants and its relationship with the colonization levels of AM and DSE fungal structures were also assessed.

Materials and methods

Site description and examined exotic medicinal plant species

Root and soil samples were collected from 10 exotic medicinal plant species (Supplementary Table S1) cultivated at the Central Survey of Medicinal Plants Collection (CSMPC), Emerald (11°33' N, 76°61' E), the Nilgiris district of Tamilnadu, India during December 2019. The site is located at an altitude of 1995 m above sea level with a relative humidity of 70-75%. The average rainfall is about 2,778 mm/year and the mean temperature of the coldest month is 15 °C.

Collection of samples

The soil samples from the root zone region at three points around each plant were collected using a hand trowel, composited, and stored in polybags. The fine feeder roots of each plant were also collected during soil sampling. The collected roots were thoroughly washed with tap water and stored in small plastic vials containing FAA (Alcohol: Formaldehyde: Acetic acid/ 90 ml: 5 ml: 5 ml) for the assessment of root fungal association and root hair characteristics. The collected root and soil samples were labelled and brought to the laboratory in an icebox within 12 hrs of collection. The soil samples were air-dried and stored at 4 °C for further analysis.

Chemical analysis of soil

The characteristics of the soil samples collected from each of the ten exotic medicinal plant species such as pH, electrical conductivity (EC), and macronutrients were analyzed. The soil extract was prepared by mixing the soil sample with distilled water (1:1), pH and EC were measured using respective digital meters. The total nitrogen (N) was estimated by the micro Kjeldahl method and available P was determined by the colorimetric method as described by Jackson (1971). Exchangeable potassium (K) in soil was extracted using ammonium acetate solution and measured with a digital flame photometer (Jackson 1971).

Enumeration, isolation, and characterization of AM fungal spores

The AM fungal spores were extracted from 50 g of each soil sample by modified wet sieving and decanting technique and enumerated (Muthukumar *et al.* 2006). Only intact AM fungal spores were counted and isolated. The morphological and subcellular characters of the isolated spores were determined by mounting them in polyvinyl alcohol/lactic acid/glycerol (PVLG) reagent using an Olympus BX51 microscope. The AM fungal spores were identified by comparing the spore characteristics with the original descriptions available at the AM phylogeny web page (<u>http://www.amf-phylogeny.com</u>).

Processing of root samples for endophytic fungal colonization

Root samples stored in the FAA were washed thoroughly with distilled water and cut into 1 cm long pieces and clarified with 2.5% KOH at 90 °C for about 13 hours. Further, the root pieces were rinsed with water and soaked in 5 N HCl for 15 minutes. After acidification, the roots were placed in 0.05% trypan blue staining solution and left undisturbed overnight for staining (Koske & Gemma 1989). The excess stain from 30 randomly selected root pieces were removed by placing them in clear lactoglycerol and mounted on clean microscopic slides, covered with cover glasses, squashed gently, and observed under Olympus BX51 microscope. The images were captured using a ProgRes 3 digital camera. The percentage of total root length colonization by fungal endophyte was determined by observing one hundred intersections for each root sample at $400 \times$ using the magnified intersection method according to McGonigle *et al.* (1990). The type of AM morphology was inferred according to Dickson (2004).

Assessment of root hair morphology

For assessment of root hair characteristics, approximately 15 mm long root pieces were mounted in the water on a microscope slide and observed under an Olympus BX51 compound microscope fitted with a calibrated ocular scale (×40-100). The root hair number, length, and width were measured according to Ma *et al.* (2001).

Statistical analysis

The data of soil analysis, endophytic fungal colonization, and root hair parameters were tested for homogeneity (Levene's test) and subjected to oneway analysis of variance (ANOVA). Mean separations were performed using Duncan's multiple range test (p<0.05). The relationship between endophytic fungal colonization variables and root hair characteristics and the number of AM fungal spores were determined by Pearson's correlation analysis. All the statistical analysis was performed using SPSS (version 16.0).

Results

Soil characteristics

The soil pH of the exotic medicinal plants was slightly acidic to marginally alkaline ranging from 5.97 [*Jacobaea maritima* (L.) Pelser & Meijden] to 7.04 (*Cuminum cyminum* L. and *Sambucus ni-gra* L.) (Supplementary Table S2). The EC of the soil ranged between 0.19 dS/m (*C. cyminum*) and 0.91 dS/m (*J. maritima* and *S. nigra*) and the total N ranged from 87 kg/ha [*Rosmarinus officinalis* L. (= Salvia rosmarinus Schleid.)] to 170 kg/ha (*Hypericum hookerianum* Wight & Arnott, *C. cyminum*, *Acacia mearnsii* De Wild and *S. nigra*). The maximum available P in soil was recorded in *C. cyminum*, (26 kg/ha) and minimum in *Achillea millefolium* L., *Melaleuca alternifolia* (Maiden & Betche) Cheel and *J. maritima* (7 kg/ha). Simi-

larly, exchangeable K was higher (311 kg/ha) in soil under *C. cyminum* and lower (114 kg/ha) in *A. millifolium* (Supplementary Table S2).

Root hair characteristics

The root hair morphology including the number, length, and width of root hairs varied significantly (p<0.01) among the different plant species. The maximum number of root hairs was recorded in *A. millifolium* when compared to other exotic medicinal plants. The root hair length ranged from 27.76 μ m (*H. hookerianium*) to 51.83 μ m (*M. alternifolia* and *R. officinalis*). Nevertheless, the root hairs of *Aloe ferox* Mill. was wider when compared to other plant species examined (Table 1).

		Root hair	
Plant species	number	length	width
	(mm ⁻¹ /plant)	(µm/plant)	(µm/plant)
Acacia mearnsii	25.60±9.62 ^{ab}	31.00±3.00 ^b	1.00±0.00 ^b
Achillea	38 20+13 80ª	18 67+3 05ª	1 00+0 00
millefolium	30.20±13.09	40.07±3.05	1.00±0.00
Aloe ferox	5.80±1.24°	44.67±2.78ª	1.27±0.12ª
Cuminum	16 20+3 46 ^{bc}	/7 17 +/ 18ª	1 00+0 00 ^b
cyminum	10.20±3.40	47.1714.10	1.00±0.00
Digitalis purpurea	4.80±0.66°	32.00±1.91 ^b	1.00±0.00 ^b
Hypericum	11 60+1 78 ^{bc}	27 67+2 05 ^b	1 00+0 00 ^b
hookerianum	11.0011.70	21.0112.05	1.0010.00
Jacobaea	18 20+1 46 ^{bc}	51 17+5 24ª	1 00+0 00 ^b
maritima	10.2011.40	51.17±5.24	1.00±0.00
Melaleuca	12 20+1 66 ^{bc}	51 83+5 97ª	1 00+0 00 ^b
alternifolia	12.2011.00	51.0010.01	1.0010.00
Rosmarinus	25 80+6 11ªb	51 83+4 45ª	1 00+0 00 ^b
officinalis	20.0010.11	51.0014.40	1.00±0.00
Sambucus nigra	6.60±1.54 ^{bc}	30.83±2.12 ^b	1.00±0.00 ^b
F-statistics	3.314***	7.261***	5.091***
df	9,49	9,149	9,149

Tabla 1. Características de los pelos radicales de especies deplantas medicinales exóticas cultivadas. Las medias en unacolumna seguidas de una (s) misma (s) letra (s) no sonsignificativamente diferentes (p > 0.05) según la Prueba de rangomúltiple de Duncan.

*** Significativo al nivel del 0,1%. df- Grado de libertad.

Table 1. Root hair characteristics of cultivated exotic medicinal
plant species. Means in a column followed by the same
superscript letter(s) are not significantly (p>0.05) different
according to Duncan's Multiple Range Test.

***Significant at 0.1% level. df- Degree of freedom.

Endophytic fungal association

Roots of all the examined medicinal plant species were colonized by both AM and DSE fungi except *A. ferox* and *M. alternifolia* which were colonized only by the former. The FRE was observed only in the roots of *Digitalis purpurea* L. The AM, DSE and FRE fungi were characterized by the presence of an appressorium on the root surface as

Figura 1. Colonización de micorrizas arbusculares (AM) y endófitos de raíces finas (FRE) en plantas medicinales cultivadas en el jardín de plantas medicinales de la colección central de muestras de plantas medicinales. A: Hifas extrarradicales (erh) y apresorio (ap) de hongos AM en la superficie de la raíz de Digitalis purpurea; B: Apresorio (ap) de FRE en la superficie de la raíz de D. purpurea; C: Espirales hifales (hc) de hongos AM en raíces de Melaleuca alternifolia; D: Presencia de hifas AM (puntas de flecha negras) y FRE (puntas de flecha blancas) en la raíz de D. purpurea; E: Gotas de aceite (puntas de flecha negras) en las hifas AM de Rosmarinus officinalis; F: Espiral arbusculada (ac) en la célula cortical de la raíz de Sambucus nigra; G: Clavijas hifas (puntas de flecha negras) en el micelio intrarradical de R. officinalis; H: Inflamaciones hifales intercalares y terminales (puntas de flecha negras) de FRE en D. purpurea; I: Hifas intracelulares (puntas de flecha negras) y arbúsculo (a) de FRE en D. purpurea; J: Espiral arbusculada (ac) y vesículas intracelulares (v) en Aloe ferox; K: Vesículas intracelulares (v) y gotita de aceite en S. nigra (punta de flecha blanca); L: Esporas intrarradicales en D. purpurea. Barras de escala = 30 µm. Figure 1. Arbuscular mycorrhizal (AM) and fine root endophyte (FRE) colonization in medicinal plants cultivated at the medicinal plants garden of the central survey of medicinal plants collection. A: Extraradical hyphae (erh) and appressorium (ap) of AM fungi on the root surface of Digitalis purpurea; B: Appressorium (ap) of FRE on the root surface of D. purpurea; C: Hyphal coils (hc) of AM fungi in roots of Melaleuca alternifolia; D: Presence of AM (black arrowheads) and FRE (white arrowheads) hyphae in root of D. purpurea; E: Oil droplets (black arrowheads) in AM hyphae of Rosmarinus officinalis; F. Arbusculate coil (ac) in root cortical cell of Sambucus nigra; G. Hyphal pegs (black arrowheads) in the intraradical mycelium of R. officinalis; H: Intercalary and terminal hyphal swellings (black arrowheads) of FRE in D. purpurea; I: Intracellular hyphae (black arrowheads) and arbuscule (a) of FRE in D. purpurea; J: Arbusculate coil (ac) and intracellular vesicles (v) in Aloe ferox; K: Intracellular vesicles (v) and oil droplet in S. nigra (white arrowhead); L: Intraradical spores (s) in D. purpurea. Scale bars = $30\mu m$.

a point of fungal entry arising from extraradical hyphae (Figs. 1A, B, 2A). The linear hyphae of AM fungi and FRE were respectively >4 and <2um in diameter and were inter-and intracellular (Fig. 1D). The AM fungi also formed coiled hyphae in all the examined plant species (Fig. 1C). Numerous oil droplets were visible in the AM fungal hyphae (Fig. 1E). Arbusculate coils (Figs. 1F, J) and intracellular vesicles were observed in the root cortical cells (Figs. 1J, K). Intraradical hyphae of AM fungi consisted of hyphal pegs in the roots of *R. officinalis* (Fig. 1G). Both intercalary and terminal swellings of FRE hyphae occurred in the roots of D. purpurea (Fig. 1H). In addition, AM fungi were also represented by the presence of intracellular hyphae, arbuscules, and intraradical spores (Figs. 1I, L). The DSE fungi were characterized by the presence of regularly septate melanized hyphae and microsclerotia (Figs. 2B-G).

AM morphology

Roots of all examined exotic medicinal plants colonized by AM fungi had different types of AM morphology. Of the ten exotic medicinal plant species, four plant species exhibited *Arum-Paris* type, whereas, the other three plants had intermediate type 3. However, *M. alternifolia* and *A. millifolium* formed intermediate type 4 and *R. officinalis* had intermediate type 1 respectively (Table 2).

The extent of AM and DSE fungal colonization

The percentage of root length containing both different AM and DSE fungal structures as well as total root length colonization varied significantly among all the exotic medicinal plant species examined. The percentage of root length containing

hyphae (%RLH) and hyphal coils (%RLHC) ranged from 18.88% (R. officinalis) to 61.06% (A. millifolium) and 1.20% (J. maritima) to 11.22% (S. nigra) respectively. However, the hyphal coils were not observed in the roots of R. officinalis. The percentage of root length containing arbuscules (%RLAR) was maximum in S. nigra (24.03%) and minimum in C. cyminum (0.52%) but it was not observed in the roots of A. millifolium, M. alternifolia and A. mearnsii. The percentage of root length with arbusculate coils (%RLAC) was 62.70%-97.32% higher in the roots of D. purpurea when compared to other plant species. Nevertheless, the arbusculate coils were absent in the roots of A. millifolium, C. cyminum, M. alternifolia, R. officinalis and J. maritima. The percentage of root length with vesicles (%RLV) ranged between 0.60% (J. maritima) and 5.95% (D. purpurea). Nevertheless, vesicles were not seen in M. alternifolia and R. officinalis roots. Overall, the total root length colonization with AM fungi (TRLCAM) was maximum in S. nigra (89.79%) and the minimum in R. officinalis (21.55%).

The roots of A. ferox and M. alternifolia were not colonized by DSE fungi. Nevertheless, the percentage of root length colonized by dark septate fungal hyphae (%RLDSH) was 48.22%-89.37% higher in R. officinalis than in other examined plant species. Likewise, the percentage of root length containing microsclerotia (%RLMS) ranged from 0.54 (H. hookerianium) to 5.84 (C. cyminum). But microsclerotia were absent in A. ferox and J. maritima roots. The moniliform hyphae were present only in the roots of A. millifolium (0.65%) and R. officinalis (2.31%). Overall, R. officinalis (45.31%) had the maximum total root length colonized by DSE fungi (TRLCD) and minimum occurred in S.

Diant ana sias	Linear	hyphae		Arbussulas		Ves	icles	A.M. 6
Plant species	Inter	Intra	- Hypnai colls	Arbuscules	Arbusculate colls	Inter	Intra	Ам туре
Acacia mearnsii	+	+	+	+	-	+	_	Intermediate 3
Achillea millefolium	+	+	+	—	—	+	+	Intermediate 4
Aloe ferox	+	+	+	+	+	+	+	Arum & Paris
Cuminum cyminum	+	+	+	+	—	+	+	Intermediate 3
Digitalis purpurea	+	+	+	+	+	—	+	Arum & Paris
Hypericum hookerianum	+	+	+	+	+	—	+	Arum & Paris
Jacobaea maritima	+	+	+	+	—	+	+	Intermediate 3
Melaleuca alternifolia	+	+	+	—	—	—	—	Intermediate 4
Rosmarinus officinalis	+	+	_	+	_	_	_	Intermediate 1
Sambucus nigra	+	+	+	+	+	+	+	Arum & Paris

Presence: +; Absence: -

 Tabla 2. Distribución de diversas estructuras fúngicas micorrízicas arbusculares (MA) en diferentes especies de plantas medicinales exóticas.

 Table 2. Distribution of various arbuscular mycorrhizal (AM) fungal structures in different exotic medicinal plant species.

			AM coloni:	zation (%)				DSE colon	ization (%)	
Plant species	RLH	RLHC	RLA	RLAC	RLV	TRLCAM	RLDSH	RLMS	RLMH	TRLCD
Acacia mearnsii	31.22±1.58d	7.33±1.18ab	0.52±0.52e	0.00±0.00°	3.14±0.87abc	$42.21\pm1.87e$	3.64±0.97 ^{de}	5.84±0.61ª	0.00±0.00b	9.49±0.62°
Achillea millefolium	61.06±1.59ª	3.16±2.39bc	0.00±0.00€	0.00±0.00∘	1.85±1.14 ^{bod}	66.07±4.11∘	19.30±3.64 ^b	2.37±0.78ªb °	0.65±0.65 ^b	22.32±2.68 ^b
Aloe ferox	45.04±2.80 ^b °	10.12±1.12ª	14.75±3.08b	5.25±1.18bc	4.21±0.88ab	79.37±3.72 ^b	0.00±0.00€	0.00±0.00∘	0.00±0.00	0.00±0.00
Cuminum cyminum	31.22±1.58d	7.33±1.18ab	0.52 ± 0.52^{e}	0.00±0.00∘	3.14±0.87abc	42.21±1.87e	3.64±0.97de	5.84±0.61ª	0.00±0.00	9.49±0.62∘
Digitalis purpurea	43.26±3.06°	3.34±1.04bc	13.32±0.63 ^b	24.29±2.16ª	4.91±1.50ª	89.12±2.03ª	6.69±1.71d	0.94±0.56bc	0.00±0.00	7.63±1.91∘
Hypericum hookerianum	40.19±2.36 [°]	3.18±0.54∞	10.13±0.69⊳ °	2.35±1.40∘	1.22±0.62 ^{cd}	57.06±1.09 ^d	7.69±0.82∝	0.54±0.54tb	0.00±0.00	8.23±1.08°
Jacobaea maritima	48.50±1.66 ^b	1.20±0.60∘	5.97±2.37 ^{cd}	0.00±0.00	0.60±0.60cd	56.27±3.13d	13.19±1.67	0.00±0.00°	0.00±0.00	13.19±1.67 °
Melaleuca alternifolia	31.14±0.86d	0.65±0.65cd	0.00±0.00e	0.00±0.00∘	0.0±00.0	31.79±0.21 ^f	0.00±0.00e	0.00±0.00∘	0.00±0.00	0.00±0.00
Rosmarinus officinalis	18.88±1.94 _e	0.00±0.00℃	2.66±1.45ª	0.00±0.00∘	0.00±0.00	21.55±1.19 ⁰	37.28±2.24 ª	5.72±2.46ª	2.31±0.73ª	45.31±4.62 ª
Sambucus nigra	39.53±2.28°	11.22 ± 4.10^{a}	24.03±2.86ª	9.06±4.61⊳	5.95±1.59ª	89.79±1.79ª	6.46±1.70d	0.62±0.62bc	0.00±0.00	7.08±1.66 [°]
F _{9,29}	22.814***	5.549***	25.460***	19.948***	5.939***	81.597***	31.227***	4.204**	5.632***	44.036***
Tabla 3. Asociación de hongos RLH-Longitud de raíz con hifa RLDSH-Longitud de raíz con f por hongos AM, TRLCD- Colo diferentes según la Prueba de rr Table 3. Arbuscular mycorrhizz RLH-Root length with hypha dark septate hyphae, RLMS-RC DSE fungi. Means in a colun level.	micorrizicos arbu s, RLHC-Longitu uifas septadas osci nización de la lor nigo múltiple de la (AM) and dark e, RLHC-Root lei sot length with m ot length with m	suculares (AM) y e d de raíz con hifas rras, RLMS-Long ugitud total de la ra Duncan. ** Signif septate endophyli ngth with hyphal o ngth with hyphal o icrosclerotia, RLN ine superscript let	andofiticos septada i hifas, RLA-Long itud de raíz con m aíz por hongos DS icativo al nivel de c (DSE) fungal as: coils, RLA-Root langth w MH-Root length w tter(s) are not sign	os oscuros (DSE) țitud de raiz con a icroesclerocios, R E. Las medias en 1 %, *** Signifi sociation in exoti ength with arbusc ength with arbusc ificantly (p>0.05)	en especies de pla rbuscules, RLAC LMH-Longitud d una columna segi sativo al nivel del sinteial plant sp ules, RLAC-Root yhae, TRLCAM- i different accordi	Longitud de raiz con Longitud de raiz con e la raíz con hifas mo uidas por la misma (s) 0,1%. ectes. length with arbuscul. Total root length col ng to Duncan's Multi ng to Duncan's Multi	iteas. espirales arbuscult niliformes, TRLC/ letra (s) en superír ate coils, RLV-Roc onization by AM 1 pie Range Test. **	adas, RLV-Longi AM- Colonizació ndice no son sign dice no su sign ti length with ves ungi, TRLCD- T * Significant at 1	ud de raíz con ve n de la longitud tu ificativamente (p icles, RLDSH-Rc tial root length c % level, ***Sign	sículas, tal de la raíz • 0.05) ot length with slonization by ficant at 0.1%

Figura 2. Colonización de hongos endófitos septados oscuros (DSE) en plantas medicinales cultivadas en el jardín de plantas medicinales del estudio central de la colección de plantas medicinales. **A:** Apresorio (ap) e hifas extrarradicales (erh) en *Hypericum hookerianum*; **B:** Hifas melanizadas de hongos DSE en la superficie de la raíz (h) en *H. hookerianum*; **C-G:** Microsclerotia (ms) e hifas (hy puntas de flecha blancas) en las células corticales de la raíz de *H. hookerianum* (D), *Rosmarinus officinalis* (E), *Melaleuca alternifolia* (F) y *Achillea millefolium* (G). Barras de escala = 30 μm.

Figure 2. Dark septate endophyte (DSE) fungal colonization in medicinal plants cultivated at the medicinal plants garden of the central survey of medicinal plants collection. **A:** Appressorium (ap) and extraradical hyphae (erh) in *Hypericum hookerianum*; **B:** Melanized hyphae of DSE fungi on the root surface (hrs) in *H. hookerianum*; **C-G:** Microsclerotia (ms) and hyphae (h and white arrowheads) in root cortical cells of *H. hookerianum* (D), *Rosmarinus officinalis* (E), *Melaleuca alternifolia* (F) and *Achillea millefolium* (G). Scale bars = 30µm.

nigra (7.08%) (Table 3).

AM fungal species diversity

The number of AM spores significantly varied $(F_{9,29}=8.876; p<0.01)$ in the root zones of different

exotic medicinal plant species. The average number of AM spores in exotic medicinal plant species per 50 grams of soil ranged from 96 (*H. hookerianium, A. ferox* and *C. cyminum*) to 1051 (*D. purpurea*) (Fig. 3). Spore morphotypes of six AM fungal species including *Acaulospora scro*-

Figura 3. Número de esporas de hongos micorrízicos arbusculares (AM) presentes en los suelos de la zona radicular de especies exóticas de la colección de plantas medicinales Nilgiris. La barra de error representa \pm error estándar. Las barras que llevan la(s) misma(s) letra(s) no son significativamente diferentes (p>0.05) según la Prueba de rango múltiple de Duncan.

Figure 3. Number of arbuscular mycorrhizal (AM) fungal spores present in the root zone soils of exotic species of medicinal plants collection, the Nilgiris. Error bar represents \pm standard error. Bars bearing the same letter(s) are not significantly different (p>0.05) according to Duncan's Multiple Range Test.

Figura 4. Esporas de hongos micorrízicos arbusculares (AM) aisladas de los suelos de la zona radicular de diferentes especies de plantas medicinales exóticas. A: *Acaulospora scrobiculata*; B: *Acaulospora tuberculata*; C: *Claroideoglomus etunicatum*; D: *Gigaspora decipiens*; E: Pared engrosada (sw) de *G. decipiens*; F: *Funneliformis geosporum*. Barras de escala = 20 μm.

Figure 4. Arbuscular mycorrhizal (AM) fungal spores isolated from the root zone soils of different exotic medicinal plant species. A: Acaulospora scrobiculata; B: Acaulospora tuberculata; C: Claroideoglomus etunicatum; D: Gigaspora decipiens; E: Thickened spore wall (sw) of G. decipiens; F: Spore of Funneliformis geosporum. Scale bars = 20 μm. biculata Trappe, Acaulospora tuberculata Janos & Trappe, Gigaspora decipiens I.R. Hall & L.K. Abbott, Claroideoglomus etunicatum (W.N. Becker & Gerd.) C. Walker & A. Schüßler, Funneliformis geosporum (T.H. Nicolson & Gerd.) C. Walker & A. Schüßler and Rhizophagus fasciculatus (Thaxt.) C. Walker & A. Schüßler were isolated from the rhizosphere soil of different exotic medicinal plant species (Fig. 4). Acaulospora species was dominant in all the examined soil samples.

Relationship between root hair, AM and DSE fungal variables

Pearson's correlation indicated a significant negative correlation (r=-0.465; p<0.05; n=30) between %RLAC and spore number. Similarly, root hair number was significantly and negatively correlated to %RLHC (r=-0.377; p<0.05), %RLAR (r= -0.470; p<0.01), %RLAC (r=-0.405; p<0.05), %RLV (r=-0.502; p<0.01) and %TRLCAM (r= -0.474; p<0.01). On contrary, %RLDSH (r= 0.391; p<0.05) and %TRLCD (r= 0.404; p<0.05) had a significant and positive correlation with root hair number.

Discussion

The present study revealed the existence of fungal endophyte association in all the examined exotic medicinal plant species under cultivation. To the best of our knowledge, the endophytic fungal association is reported for the first time in six (A. ferox, A. mearnsii, C. cyminum, H. hookerianium, J. maritima and M. alternifolia) of the ten medicinal plant species examined. In this study, all the studied medicinal plants had a symbiotic association with AM fungi and eight plant species had the co-existence of DSE fungi. Similarly, previous studies have also reported the root fungal endophyte association in medicinal plant species (Muthukumar et al. 2006, Zubek & Błaszkowski 2009, Sharma & Jha 2012, Piszczek et al. 2019). The occurrence of AM fungi in all the studied plants may be due to the fact that almost all the vascular plants are naturally colonized by AM fungi (Wang & Qui 2006, Brundrett 2009).

All the studied plant species in the current study exhibited the intermediate type of AM morphology. The occurrence of intermediate AM morphology in *A. millifolium* in this study contradicts the observations of Zubek *et al.* (2011) and Safari

Sinegani & Yeganeh (2017) who reported typical Arum- or Paris-type of AM colonization in A. millifolium. The Paris-type AM is mostly prevalent in the plants or sites characterized by lownutrient content and highly stressed habitat in the natural ecosystem (Ahulu et al. 2006). Moreover, most of the plant species of Fabaceae, Asteraceae, Lamiaceae, and Asclepidiaceae have typical Arum- or Paris-type morphology (Muthukumar et al. 2006, Zubek & Błaszkowski 2009, Safari Sinegani & Yeganeh 2017). The difference in the AM morphological types in this study with earlier studies could be attributed to the variations in environmental factors including soil moisture, light intensity, and temperature at different regions which affect the patterns of AM colonization in plant roots (Yamato 2004). Also, the AM morphology is affected by the characteristics of the host plant (Tominga et al. 2020). Host plant with sporadic intercellular air spaces generally has the intermediate type of AM morphology (Smith & Smith 1997).

The significant differences in the percentage of root length with different AM fungal structures could be due to the variations in their soil P level (Rożek *et al.* 2019). Though, the mycorrhizal status of four of the medicinal plant species examined in the current study (*A. millifolium*, *D. purpurea*, *R. officinalis* and *S. nigra*) has already been reported (Wang & Qiu 2006), the extent AM fungal structures occurring in roots of those plants have not been quantified. Moreover, most of the plants reviewed by Wang & Qiu (2006) have been examined from their native region in the natural ecosystem (Gucwa-Przepióra *et al.* 2016). Nevertheless, the medicinal plants analyzed in this study were exotic and are under cultivation.

To the best of our knowledge, FRE is reported in the roots of *D. purpurea* apart from AM and DSE association for the first time. These endophytic fungi have a very small hyphal diameter (<2.0µm), forms arbuscules and, often co-occur with AM fungi (Hoysted *et al.* 2019). The FRE is assumed to improve the P uptake in plants; however, their function along with AM fungi is not largely understood (Orchard *et al.* 2017). Moreover, the maximum %RLAR and %RLAC levels observed in the *D. purpurea* roots could be attributed to the presence of both FRE and AM fungi. In addition, the highest number of AM fungal spores was also associated with the soils of this plant species.

The occurrence of DSE fungi recorded in the current study is similar to those reported in other medicinal plants (Zubek et al. 2012, Piszczek et al. 2019). Also, there was a significant variation in the DSE fungal variables among the studied medicinal plants. The regularly septate melanized hyphae of the DSE fungi colonizing the cortical cells were more prevalent than the other structures like microsclerotia or moniliform hyphae in the roots examined. This is similar to the observations in other studies where DSE fungal hyphae were reported to be the major DSE fungal structure in medicinal plants (Zubek & Błaszkowski 2009). Although AM symbiosis in A. millifolium was reported in a previous study (Zubek et al. 2011), this study revealed the co-occurrence of DSE fungal association in this species. Previous studies have shown that DSE fungal symbiosis could stimulate metabolites production in medicinal plants (Zhu et al. 2015).

The co-occurrence of AM and DSE fungi in the eight plant species of the current study is in line with observations of previous studies where the dynamic nature of these root colonizing fungal communities was reported (Muthukumar et al. 2006, Zubek & Błaszkowski 2009, Piszczek et al. 2019). The overall higher AM fungal colonization than the DSE fungal colonization in this study is in line with the findings of earlier studies where such an observation was made. For example, Zubek et al. (2011) reported AM colonization levels of 2.5%-77.9% compared to the 2.4%-47.3% of DSE fungal colonization levels in medicinal plants growing in the Jagiellonian University Botanical garden, Kraków, Poland. Similarly, Piszczek et al. (2019) also reported low levels of DSE fungal colonization (1.11%-21.97%) compared to AM fungal colonization (29.3%-100%) in medicinal plants cultivated in Poland. In this study, S. nigra with the highest %TRLCAM had the lowest %TRLCD and R. officinalis exhibited maximum %TRLCD but minimum total root length colonization by AM fungi. Some authors speculate that DSE fungi may play the function of AM fungi in its absence or rare occurrence in the roots as reported in some of the medicinal plants (Zubek & Błaszkowski 2009). Nevertheless, DSE symbiosis could not be considered as a substitute for AM fungi as DSE fungi do not form special interfaces like AM fungi for resource transfer. Though both these fungal associations aid in plant growth promotion and nutrient uptake (Rouphael *et al.* 2015, He *et al.* 2019), but their role in the establishment of exotic/introduced plant species outside their native range needs an experimental approach to understand the functions of these fungi in the survival of these exotic medicinal plant species.

Root characteristics including root hair morphology play an important role in mycorrhizal dependency and colonization levels in plants (Maherali 2014, Zou et al. 2019). In the present study, root hair number, length and width significantly varied among the studied medicinal plant species. Muthukumar et al. (2004) suggested that plants growing in nutrient rich soils often consist of copious root hairs and low mycorrhizal colonization. Similarly, in the current study, plants with higher AM colonization levels had less root hairs. However, some of the studies showed that root hair traits (root hair number, length, and diameter) are independent of mycorrhizal colonization in plant roots (Novero et al. 2008). This is evidenced by the existence of a significant negative correlation between the root hair number and root length containing most of the AM fungal structures. This is in accordance with the observations of previous studies in citrus and tea plants (Wu et al. 2016, Shao et al. 2018). This negative correlation observed in this study could be due to the presence of abundant root hairs that could help in direct P acquisition by plants in P deficient soil. However, the positive correlations between DSE fungal variables (%DSH and %TRLCD) and root hair number could be due to the penetration of DSE hyphae mostly through the root hairs (Vergara et al. 2019).

The number of AM fungal spores reported in the present study (96 to 1050/50 g soil) is higher than the spore numbers from various vegetation types in Nilgiris Biosphere Reserve, southern Western Ghats (Lakshmipathy et al. 2012). Moreover, Wang & Jiang (2015) also reported a high prevalence of AM fungal spores (135-1430/50 g soil) in medicinal plants growing in southeast China. In contrast to the observations of the present study, Rajkumar et al. (2012) reported only 10-260 AM spores/50g of soil from different medicinal plants growing in Western Ghats region of Karnataka. The variation in the AM spore number could be due to the variations in edaphic factors, climatic conditions, vegetation, and host plant, intraspecific competition among fungi and the environmental factors, and sporulation ability

(Song *et al.* 2019, Silva-Flores *et al.* 2019). The AM spore number was related to colonization levels in certain exotic medicinal plants. For example, the highest number of AM fungal spores was observed in *D. purpurea* which also had higher AM colonization levels. This observation was further supported by the fact that spore numbers were positively correlated with %RLAC in the present study.

In the present study, the soils of all the medicinal plant species were slightly acidic to neutral or slightly alkaline soil. It has been suggested that acidic soil (pH>4.5) decreases the number of AM spores and affects the germination of AM fungi (Isobe *et al.* 2007, Kohout *et al.* 2015). Moreover, a large number of AM fungal spores prevail in neutral soil pH (6.5) when compared to soils with pH less than 5.5 (Jamiołkowska *et al.* 2018). This supports the observations of this study, where slight acidic to marginally alkaline soil harboured a greater number of AM fungal spores.

Though the number of AM spores occurring in the soils was large, but these belonged to only six AM fungal morphotypes. Of these, spores of Acaulospora species was found in all the soil samples analyzed. Similarly, Zubek et al. (2012) also reported six AM fungal spore morphotypes from soils of 25 medicinal plants. In contrast, Radhika & Rodrigues (2010) and Rajkumar et al. (2012) reported more than 40 AM fungal spore morphotypes associated with different medicinal plants of southern Western Ghats, India. Similar to the observations of the current study, Wang & Jiang (2015) also reported the presence of Acaulospora, Gigaspora, Funneliformis, and Rhizophagus species in soils associated with the medicinal plant species. The dominance of Acaulospora species may be attributed to its high adaption to different soil conditions, endures environmental stresses (Chagnon et al. 2013, Vieira et al. 2020), and also it is assumed that species of Acaulospora could rapidly sporulate (Wang & Jiang 2015). The AM fungal diversity is affected by several factors including seasonal variations; soil characteristics host plant type, vegetation, and environmental factors (Bauer et al. 2020). Moreover, earlier studies have reported low AM fungal spore diversity at higher elevation or altitudes which could be the possible reason for less AM fungal species richness in the current study (Egan et al. 2017, Shi et al. 2019). The diversity of AM fungi associated with these exotic medicinal plant

species could be formulated into bioinoculums which would be helpful in increasing the growth and productivity of these medicinal plants.

Conclusion

The present study clearly indicated that the exotic medicinal plant species cultivated in the Nilgiris could form a strong symbiotic relationship with indigenous endophytic fungi. All the exotic medicinal plants harboured intermediate type of AM morphology. Among the different exotic plant species examined, D. purpurea was simultaneously colonized by AM, DSE, and FRE fungi. Moreover, root hair dimensions had a significant influence on AM and DSE fungal association in these cultivated exotic medicinal plants. It is clear from the study that native AM/DSE fungal communities help in the successful establishment and improve plant productivity of these exotic medicinal plant species. Further, experimental studies are required to investigate the influence of AM and DSE fungi association in phytochemical enhancement activity in these medicinal plants.

References

- Ahulu EM, Gollotte A, Gianinazzi-Pearson V & Nonaka M. 2006. Cooccurring plants forming distinct arbuscular mycorrhizal morphologies harbor similar AM fungal species. Mycorrhiza 17: 37-49. <u>https://doi. org/10.1007/s00572-006-0079-0</u>.
- Ahvazi M, Khalighi-Sigaroodi F, Charkhchiyan MM, Mojab F, Mozaffarian VA & Zakeri H. 2012. Introduction of medicinal plants species with the most traditional usage in Alamut region. Iranian Journal of Pharmaceutical Research 11(1): 185-194.
- Alencar NL, Santoro FR & Albuquerque UP. 2014. What is the role of exotic medicinal plants in local medical systems? A study from the perspective of utilitarian redundancy. Revista Brasileira de Farmacognosia 24(5): 506-515. <u>https://doi.org/10.1016/j.bjp.2014.</u> 09.003.
- Bauer JT, Koziol L & Bever JD. 2020. Local adaptation of mycorrhizae communities changes plant community composition and increases aboveground productivity. Oecologia 192(3): 735-744. <u>https://doi.org/10.1007/s00442-020-04598-9.</u>
- Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ahmed N, . . . Zhang L. 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science 10: 1068. <u>https://doi.org/10.3389/fpls. 2019.01068</u>.
- Brundrett MC. 2009. Mycorrhizal associations and other means of nutrition of vascular plants: understanding

the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil 320: 37-77. https://doi.org/10.1007/s11104-008-9877-9.

- Brundrett MC & Tedersoo L. 2018. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist 220(4): 1108-1115. <u>https:// doi.org/10.1111/nph.14976</u>.
- Chagnon PL, Bradley RL, Maherali H & Klironomos JN. 2013. A trait-based framework to understand life history of mycorrhizal fungi. Trends in Plant Science 18(9): 484-491. <u>https://doi.org/10.1016/j.tplants.20</u> 13.05.001.
- Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V & Svistoonoff S. 2020. Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity 12: 370. <u>https://doi.org/10.3390/d12100370</u>.
- Dickson S. 2004. The Arum-Paris continuum of mycorrhizal symbioses. New Phytologist 163(1): 187-200. <u>https://doi.org/10.1111/j.1469-8137.2004.0</u> 1095.x.
- Egan CP, Callaway RM, Hart MM, Pither J & Klironomos J. 2017. Phylogenetic structure of arbuscular mycorrhizal fungal communities along an elevation gradient. Mycorrhiza 27(3): 273-282. <u>https://doi.org/10.1007/s00572-016-0752-x</u>.
- Farias GC, Nunes KG, Soares MA, de Siqueira KA, Lima WC, Neves ALR, . . . Gomes Filho E. 2020. Dark septate endophytic fungi mitigate the effects of salt stress on cowpea plants. Brazilian Journal of Microbiology 51(1): 243-253. <u>https://doi.org/10.1007/ s42770-019-00173-4</u>.
- Gucwa-Przepióra E, Chmura D & Sokołowska K. 2016. AM and DSE colonization of invasive plants in urban habitat: a study of Upper Silesia (southern Poland). Journal of Plant Research 129: 603-614. <u>https://doi.org/10.1007/s10265-016-0802-7</u>.
- He C, Wang W & Hou J. 2019. Characterization of dark septate endophytic fungi and improve the performance of liquorice under organic residue treatment. Frontiers in Microbiology 10: 1364. https://doi.org/10.3389/fmicb.2019.01364.
- Hoysted GA, Jacob AS, Kowal J, Giesemann P, Bidartondo MI, Duckett JG, ... Schornack S, Pressel S & Field KJ. 2019. Mucoromycotina fine root endophyte fungi form nutritional mutualisms with vascular plants. Plant Physiology 181: 565-577. https://doi.org/10.1104/pp.19.00729.
- Isobe K, Aizawa E, Iguchi Y & Ishii R. 2007. Distribution of arbuscular mycorrhizal fungi in upland field soil of Japan. 1. Relationship between spore density and the soil environmental factor. Plant Production Science 10(1): 122-128. <u>https://doi.org/10.1626/pps. 10.122</u>.
- Jackson ML. 1971. Soil Chemical Analysis Prentice Hall of India Pvt. Ltd., New Delhi, India.
- Jamiołkowska A, Księżniak A, Hetman B, Kopacki M, Skwaryło-Bednarz B, Gałązka A & Thanoon AH. 2017. Interactions of arbuscular mycorrhizal fungi with plants and soil microflora. Acta Scientiarum Polonorum, Hortorum Cultus 16(5): 89-95. <u>https://</u>

doi.org/10.24326/asphc.2017.5.9.

- Khanam D, Mau M, Arm S & Hossain T. 2006. Effect of edaphic factors on root colonization and spore population of arbuscular mycorrhizal fungi. Bulletin of the Institute of Tropical Agriculture, Kyushu University 29(1): 97-104. <u>https://doi.org/10.11189/ bita.29.97</u>.
- Kohout P, Doubková P, Bahram M, Suda J, Tedersoo L, Voříšková J & Sudová R. 2015. Niche partitioning in arbuscular mycorrhizal communities in temperate grasslands: a lesson from adjacent serpentine and nonserpentine habitats. Molecular Ecology 24(8): 1831-1843. <u>https://doi.org/10.1111/mec.13147</u>.
- Koske RE & Gemma JN. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research 92(4): 486-488. <u>https://doi.org/10.1016/S0</u> <u>953-7562(89)80195-9</u>.
- Kumarasamyraja D, Jeganathan NS & Manavalan R. 2012. A review on medicinal plants with potential wound healing activity. International Journal of Pharma Sciences 2(4): 105-115.
- Lakshmipathy R, Balakrishna AN & Bagyaraj DJ. 2012. Abundance and diversity of AM fungi across a gradient of land use intensity and their seasonal variations in Niligiri Biosphere of the Western Ghats, India. Journal of Agricultural Science and Technology 14(4): 903-918.
- Ma JF, Goto S, Tamai K & Ichii M. 2001. Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiology 127: 1773-1780. <u>https://doi.org/10.1104/ pp.010271</u>.
- Maherali H (2014). Is there an association between root architecture and mycorrhizal growth response?. New Phytologist 204(1): 192-200. <u>https://doi.org/10.1111/</u> <u>nph.12927</u>.
- Mayerhofer MS, Kernaghan G & Harper KA. 2013. The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23(2): 119-128. <u>https://doi.org/10.1007/s00572-012-0456-9</u>.
- McGee KM, Eaton WD, Shokralla S & Hajibabaei M. 2019. Determinants of soil bacterial and fungal community composition toward carbon-use efficiency across primary and secondary forests in a Costa Rican conservation area. Microbial Ecology 77: 148-167. <u>https://doi.org/10.1007/s00248-018-1206-0</u>.
- McGonigle TP, Miller MH, Evans DG, Fairchild GL & Swan JA. 1990. A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytologist 115(3): 495-501. <u>https://doi.org/10.1111/j.1469-8137.1990.tb00476.x</u>
- Medeiros PMD, Ferreira-Júnior WS, Ramos MA, Silva TCD, Ladio AH & Albuquerque UP. 2017. Why do people use exotic plants in their local medical systems? A systematic review based on Brazilian local communities. PLoS One 12 e0185358. <u>https:// doi.org/10.1371/journal.pone.0185358</u>.
- Muthukumar T, Udaiyan K & Shanmughavel P. 2004. Mycorrhiza in sedges-an overview. Mycorrhiza 14(2): 65-77. <u>http://dx.doi.org/10.1007/s00572-004-0296-3</u>.
- Muthukumar T, Senthilkumar M, Rajangam M & Udaiyan K. 2006. Arbuscularmycorrhizal morphology and

dark septate fungal association in medicinal and aromatic plants of Western Ghats, Southern India. Mycorrhiza 17(1): 11-24. <u>https://doi.org/10.1007/s00</u> 572-006-0077-2

- Muthukumar T, Chinnathambi M & Priyadharsini P. 2016. Root fungal associations in some nonorchidaceous vascular lithophytes. Acta Botanica Brasilica 30(3): 407-421. <u>http://dx.doi.org/10.1590/</u> 0102-33062016abb0074.
- Muthukumar T, Sathiyadash K & Valarmathi V. 2018. Arbuscular mycorrhizal and dark septate endophyte fungal associations in plants of different vegetation types in Velliangiri hills of Western Ghats, Southern India. Acta Botanica Hungarica 60(1-2): 185-222. https://doi.org/10.1556/034.60.2018.1-2.9.
- Muthuraja R. & Muthukumar T. 2019. Arbuscular mycorrhizal and dark septate endophyte fungal association in cassava (Manihot esculenta crantz) varieties, Southern India. Notulae Scientia Biologicae 11(1): 154-166. <u>https://doi.org/10.15835/ nsb11110397</u>.
- Nguanchoo V, Wangpakapattanawong P, Balslev H & Inta A. 2019. Exotic plants used by the Hmong in Thailand. Plants 8: 500. <u>https://doi.org/10.3390/ plants8110500</u>.
- Nishteswar K. 2014. Depleting medicinal plant resources: A threat for survival of Ayurveda. Ayu 35(4): 349-350. <u>https://doi.org/10.4103/0974-8520.</u> <u>158972</u>.
- Novero M, Genre A, Szczyglowski K & Bonfante P. 2008. Root Hair Colonization by Mycorrhizal Fungi. In: Root Hairs (Emons AMC & Ketelaar T, eds). Springer, Berlin, pp. 315 <u>https://doi.org/10.1007/</u> 7089_2008_12.
- Orchard S, Standish RJ, Dickie IA, Renton M, Walker C, Moot D & Ryan MH. 2017. Fine root endophytes under scrutiny: a review of the literature on arbuscule-producing fungi recently suggested to belong to the Mucoromycotina. Mycorrhiza 27: 619-638. <u>https://doi.org/10.1007/s00572-017-0782-z.</u>
- Peterson RL, Wagg C & Pautler M. 2008. Associations between microfungal endophytes and roots: do structural features indicate function?. Botany 86(5): 445-456. <u>https://doi.org/10.1139/B08-016</u>.
- Piszczek P, Kuszewska K, Błaszkowski J, Sochacka-Obruśnik A, Stojakowska A & Zubek S. 2019. Associations between root-inhabiting fungi and 40 species of medicinal plants with potential applications in the pharmaceutical and biotechnological industries. Applied Soil Ecology 137: 69-77. <u>https://doi.org/10.1016/j.apsoil.2019.01.</u> 018.
- Radhika KP. & Rodrigues BF. 2010. Arbuscular mycorrhizal fungal diversity in some commonly occurring medicinal plants of Western Ghats, Goa region. Journal of Forestry Research 21: 45-52. https://doi.org/10.1007/s11676-010-0007-1.
- Rajkumar HG. Seema HS & Sunil Kumar CP. 2012. Diversity of arbuscular mycorrhizal fungi associated with some medicinal plants in Western Ghats of Karnataka region, India. World Journal of Science and Technology 2(1): 13-20.
- Rouphael Y, Franken P, Schneider C, Schwarz D,

Giovannetti M, Agnolucci M,... Colla G. 2015. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae 196: 91-108. <u>https://doi.org/10.1016/j.scienta.2015.09.002</u>.

- Rożek K, Rola K, Błaszkowski J & Zubek S. 2019. Associations of root-inhabiting fungi with herbaceous plant species of temperate forests in relation to soil chemical properties. Science of the Total Environment 649: 1573-1579. <u>https://doi.org/10. 1016/j.scitotenv.2018.08.350</u>.
- Safari-Sinegani AA & Yeganeh ME. 2017. The occurrence of arbuscular mycorrhizal fungi in soil and root of medicinal plants in Bu-Ali Sina garden in Hamadan, Iran. Biological Journal of Microorganism 5(20): 43-59.
- Shao, YD, Zhang DJ, Hu XC, Wu QS, Jiang CJ, Xia TJ, ... Kuča K. 2018. Mycorrhiza-induced changes in root growth and nutrient absorption of tea plants. Plant, Soil and Environment 64(6): 283-289. <u>https:// doi.org/10.17221/126/2018-PSE</u>.
- Sharma BB & Jha DK. 2012. Arbuscular mycorrhiza and dark septate fungal associations in medicinal and aromatic plants of Guwahati. Journal of Microbiology and Biotechnology Research 2(1): 212-222.
- Shi Z, Yin K, Wang F, Mickan BS, Wang X, Zhou W & Li Y. 2019. Alterations of arbuscular mycorrhizal fungal diversity in soil with elevation in tropical forests of China. Diversity 11(10): 181. <u>https://doi.org/10.3390/ d11100181</u>.
- Silva-Flores P, Bueno CG, Neira J & Palfner G. 2019. Factors affecting arbuscular mycorrhizal fungi spore density in the Chilean Mediterranean-type ecosystem. Journal of Soil Science and Plant Nutrition 19: 42-50. <u>https://doi.org/10.1007/s42729-018-0004-6</u>.
- Smith FA & Smith SE. 1997. Structural diversity in (vesicular)–arbuscular mycorrhizal symbioses. New Phytologist 137(3): 373-388. <u>https://doi.org/10.1046/j.1469-8137.1997.00848.x</u>.
- Song J, Chen L, Chen F & Ye J. 2019. Edaphic and host plant factors are linked to the composition of arbuscular mycorrhizal fungal communities in the root zone of endangered Ulmus chenmoui Cheng in China. Ecology and Evolution 9(15): 8900-8910. https://doi.org/10.1002/ece3.5446.
- Tedersoo L, Sánchez-Ramírez S, Koljalg U, Bahram M, Döring M, Schigel D, . . . Abarenkov K. 2018. Highlevel classification of the Fungi and a tool for evolutionary ecological analyses. Fungal diversity 90: 135-159. <u>https://doi.org/10.1007/s13225-018-04</u> <u>01-0</u>.
- Tominaga T, Miura C, Takeda N, Kanno Y, Takemura Y, Seo M, ... Kaminaka H. 2020. Gibberellin promotes fungal entry and colonization during Paris-type arbuscular mycorrhizal symbiosis in Eustoma grandiflorum. Plant and Cell Physiology 61(3): 565-575. <u>https://doi.org/10.1093/pcp/pcz222</u>.
- Vasisht K, Sharma N & Karan M. 2016. Current perspective in the international trade of medicinal

plants material: an update. Current Pharmaceutical Design 22(27): 4288-4336. <u>https://doi.org/10.2174/1381612822666160607070736</u>.

- Vergara C, Araujo KEC, Alves LS, de Souza SR, Santos LA, Santa-Catarina C, ... Zilli JÉ. 2018. Contribution of dark septate fungi to the nutrient uptake and growth of rice plants. Brazilian Journal of Microbiology 49(1): 67-78. <u>https://doi.org/10.1016/j. bim.2017.04.010</u>.
- Vergara C, Araujo KEC, Souza SRD, Schultz N, Saggin Júnior OJ, . . . Zilli JÉ. 2019. Plant-mycorrhizal fungi interaction and response to inoculation with different growth-promoting fungi. Pesquisa Agropecuária Brasileira 54. <u>https://doi.org/10.1590/s1678-3921.pa</u> <u>b2019.v54.25140</u>.
- Vieira LC, Silva DKAD, Escobar IEC, Silva JMD, Moura IAD, Oehl F & Silva GAD. 2020. Changes in an arbuscular mycorrhizal fungi community along an environmental gradient. Plants 9: 52. <u>https://doi.org/ 10.3390/plants9010052</u>.
- Wang B & Qiu YL. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16(5): 299 -363. <u>https://doi.org/10.1007/s00572-005-0033-6</u>.
- Wang M & Jiang P. 2015. Colonization and diversity of AM fungi by morphological analysis on medicinal plants in southeast China. The Scientific World Journal 2015: 1-7. <u>https://doi.org/10.1155/2015/75</u> <u>3842</u>.
- Wu QS, Liu CY, Zhang DJ, Zou YN, He XH & Wu QH. 2016. Mycorrhiza alters the profile of root hairs in trifoliate orange. Mycorrhiza 26(3): 237-247. <u>https:// doi.org/10.1007/s00572-015-0666-z</u>.
- Yamato M. 2004. Morphological types of arbuscular mycorrhizal fungi in roots of weeds on vacant land. Mycorrhiza 14(2): 127-131. <u>https://doi.org/10.1007/</u> <u>s00572-003-0246-5</u>.
- Zhu ZB, Fan JY, Guo QS, Liu ZY & Zhu GS. 2015. The growth and medicinal quality of Epimedium wushanense are improved by an isolate of dark septate fungus. Pharmaceutical Biology 53(9): 1344-1351. https://doi.org/10.3109/13880209.2014.9822 96.
- Zou YN, Zhang DJ, Liu CY & Wu QS. 2019. Relationships between mycorrhizas and root hairs. Pakistan Journal of Botany 51(2): 727-733.
- Zubek S & Błaszkowski J. 2009. Medicinal plants as hosts of arbuscular mycorrhizal fungi and dark septate endophytes. Phytochemistry Reviews 8(3): 571-580. <u>https://doi.org/10.1007/s11101-009-9135-7</u>.
- Zubek S, Blaszkowski J & Mleczko P. 2011. Arbuscular mycorrhizal and dark septate endophyte associations of medicinal plants. Acta Societatis Botanicorum Poloniae 80(4): 285-292.
- Zubek S, Stefanowicz AM, Błaszkowski J, Niklińska M & Seidler-Łożykowska K. 2012. Arbuscular mycorrhizal fungi and soil microbial communities under contrasting fertilization of three medicinal plants. Applied Soil Ecology 59: 106-115. <u>http://dx.doi.org/10.10</u> 16/j.apsoil.2012.04.008.