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Bioproductos de la industria de la yuca: sustratos alternativos para
la  producción  de  ciclodextrina  glucosiltransferasa  por  alcalófilo
Bacillus trypoxylicola SM-02

En el presente trabajo estudiamos el uso licor de maíz fermentado
(LMF), harina de cáscara de yuca (HCY) y aguas residuales de
yuca para la producción de ciclodextina glicosiltransferasa (CGTa-
se) por un nuevo aislado alcalófilo de Bacillus trypoxylicola SM-02
en fermentación sumergida. Los experimentos se realizaron por Di-
seño Central Compuesto Rotativo 22 totalizando 11 ensayos. La
mayor actividad enzimática de 352.53 U/mL se obtuvo con 1.5 g de
HCY y 0.6 g de LMF. La temperatura y el pH óptimos fueron 55 ºC
y pH 8.0, respectivamente. CGTase mostró una actividad relativa
superior al 50% durante 120 min. a la temperatura óptima. Solo el
CaCl2  mostró  actividad  positiva  para  CGTasa.  Los  resultados
apuntaron a un buen potencial de  B. trypoxylicola SM-02 para la
producción de CGTasa usando substratos residuales.
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Abstract

In  the  present  work  was  studied  the  use  of  cassava  peel  flour
(CPF), corn steep liquor (CSL), and cassava wastewater as sub-
strates to produce cyclodextrin glycosyltransferase (CGTase) from
a new alkalophilic isolate of  Bacillus trypoxylicola SM-02 by sub-
merged fermentation. The experiments were performed as a Cent-
ral Composite Design 22, totalizing 11 assays. An enzymatic activity
of 352.53 U/mL was obtained using 1.5 g of CPF and 0.6 g of CSL.
The optimum temperature and pH of CGTase was 55 °C and 8.0,
respectively. The CGTase depicted a relative activity of more than
50% for 120 min at the optimum temperature. The only salt that
positively  influenced the CGTase activity was CaCl2.  The results
are indicative of a potential role of  B. trypoxylicola SM-02 in the
production of CGTase using residual substrates.

Key words: Enzyme; Agro-industrial byproducts; Bacteria.
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Introduction

An increasing interest in the study involving cy-
clodextrin  glycosyltransferase  (CGTase,  EC
2.4.1.19),  also  known as  cyclomaltodextrin  glu-
canotransferase, has developed due to its ability to
convert  the  starch  molecules  to  cyclodextrins
(CDs)  through an intramolecular  transglycosyla-
tion  reaction  (cyclization)  (Van  der  Veen  et  al.
2000, Amud  et al. 2008, Satyawali  et al. 2017).
Cyclodextrin  glycosyltransferase  is  synthesized
extracellularly by different microorganisms (Han
et al. 2014). However, the bacteria belonging to
the genus  Bacillus Cohn, 1872 are  most  widely
studied for CGTase production (Costa et al. 2015,
Eş et al. 2016, Coelho et al. 2016). Cyclodextrins
are characterized as cyclic oligosaccharides con-
taining  six  (α-CD),  seven  (β-CD)  and  eight  (γ-
CD) glucopyranose units linked by α-1,4 glyco-
sidic  linkages.  The  CDs  are  characterized  by  a
ring of truncated cone shape consisting of a hy-
drophilic exterior and a hydrophobic interior sur-
face  and  thus  are  capable  of  forming  inclusion
compounds  with  a  wide  variety  of  molecules
(Venturini  et al. 2008, Kfoury  et al. 2018). The
formation of inclusion compounds resulting from
the merging of the CD ring and a guest molecule
(organic and inorganic) in the liquid or eventually
solid medium is known to alter the physical and
chemical properties of these compounds such as
an increase or decrease in the solubility, stability,
color, and smell (Venturini  et al. 2008). The cy-
clodextrins have been utilized as aroma and flavor
stabilizers  and  for  the  elimination  of  unwanted
compounds in the food industry (Arya & Srivas-
tava 2006), to reduce the toxicity of some drugs in
the  pharmaceutical  industry  (Nicolazzi  et  al.
2002), and in washing and dyeing processes in the
textile industry (Andreaus et al., 2010). These are
also  employed  in  removing  pollutants  from  the
soil (Szaniszló et al. 2005, Venturini et al. 2008).
In an attempt to reduce the cost of production of
CGTase,  some residual  products  found in abun-
dance at low cost and with high nutritional con-
tent have been utilized as an alternative. This is
important for the CGTase production due to the
high cost of both the enzyme and the CDs. The
products  and  by-products  derived  from  cassava
have been utilized as substrates for CGTase pro-
duction. Alves-Prado et al. (2002) studied CGTase
production using four strains of Bacillus sp., sub-

group  alcalophilus by semi-solid-state  fermenta-
tion using cassava starch. This carbon source was
also used in the enzyme production by  Bacillus
licheniformis (Weigmann,  1898)  Chester,  1901,
Bacillus sp. BACNC-1 and BACRP (Bonilha  et
al. 2006, Menocci et al. 2008). The residues from
the  cassava  flour  industry  such  as  cassava  peel
and cassava wastewater and waste from the corn
production such as corn steep liquor are consid-
ered as economically viable substrates with good
potential  for  CGTase  production.  The  cassava
wastewater  is  considered  a  relatively  polluting
agent  due  to  the  significant  amount  of  soluble
sugars and organic matter present in it (high CDO
values), besides being potentially toxic due to the
presence of  cyanide formed from the enzymatic
hydrolysis of Lynamarin, a cyanogenic glycoside
present in members of Manihot genus as cassava
(Kaewkannetra  et al. 2011, Zevallos  et al. 2018,
Watthier  et  al. 2019).  Therefore,  cassava waste-
water, as a fermentative substrate may help in re-
ducing the environmental impacts produced by in-
appropriate  disposal  of  this  waste  besides  con-
tributing in reducing the cost of the CGTase pro-
duction. In this context, the present study aimed to
analyze  the  CGTase  production  using  cassava
wastewater  and  ground  cassava  peel  as  carbon
sources, and corn steep liquor as a nitrogen source
by submerged fermentation using a bacterial iso-
late obtained from cassava flour factory and iden-
tified as Bacillus trypoxylicola SM-02 (Coelho et
al., 2016). 

Material and Methods

Bacterial strain and substrates

Bacillus  trypoxylicola SM-02 was  isolated  from
the  soil  samples  containing  cassava  wastewater
from a cassava flour factory in Cruz das Almas
county,  Bahia,  Brazil  (Coelho  et  al. 2016).  The
cassava peel and cassava wastewater used as sub-
strates in the fermentative process were also pro-
vided by cassava flour factories of Cruz das Al-
mas county. The bacterial isolate was preserved in
20% glycerol  at  -10  °C.  The  cassava  peel  was
washed under running water to remove the excess
soil and later dried in a kiln with air circulation at
70 °C for 72 hours. After drying, the cassava peel
was ground to obtain a fine powder (Cassava Peel
Flour-CPF). 
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Molecular identification

A  pair  of  universal  primers,  8F  (5’AGAGTT
TGATCCTGGCTCAG3’) and 1492R (5'ACGGC-
TACCTTGTTACGACTT3’), was used to amplify
the 16S rRNA. The sequencing was carried out
commercially by Macrogen Co. (Korea). The 16S
rRNA  sequence  was  used  as  a  query  in
BLASTN25  search  against  the  National  Center
for Biotechnology Information (NCBI) database.
MEGA 5.05  software  was  used  to  construct  an
evolutionary model and to generate the maximum
likelihood tree. The 16S rRNA sequences used in
the phylogenetic analysis were retrieved from the
site  of  List  of  Prokaryotic  Standing  Names
(LPSN) during (Coelho et al. 2016)

Fermentation assays

The pre-inoculum consisted of a basal medium as
described by Nakamura & Horikoshi (1976) con-
taining (g/L): soluble starch, 10; yeast extract, 5;
peptone,  5;  MgSO4.7H2,  0.2;  KH2PO4,  1.0;  and
Na2CO3,  10 in distilled water. The culture of  B.
trypoxylicola SM-02 was transferred to 10 mL of
pre-inoculum medium and maintained at 35 °C at
150 rpm for 24 hours.  For inoculum, the starch
was  replaced  by  CPF  and  the  nitrogen  sources
(yeast extract and peptone) by corn steep liquor-
CSL (Sigma®)  and  was  solubilized  in  cassava
wastewater in place of distilled water. After an in-
cubation of 24 hours, the pre-inoculum was trans-
ferred to 125 mL Erlenmeyer flasks containing 50
mL of inoculum medium and kept at 35 °C and
150 rpm for 24 hours. Then, an aliquot of 1 mL of
the inoculum (O.D.600= 0.1) was transferred to 250
mL Erlenmeyer flasks containing 25 mL of fer-
mentation medium according to the Central Com-
posite Design 22 at 35 ºC and 150 rpm (Table 1).
After 72 hours of fermentation, the samples were
centrifuged at 5,000 rpm, 4 °C for 30 min. The
cell-free supernatant  and the biomass were used
for the determination of CGTase activity and cel-
lular growth, respectively.

Optimization  using  Central  Composite
Design (CCD)

The  concentration  of  CPF  and  CSL  was  per-
formed  using  Response  Surface  Methodology
(RSM)  according  to  Rodrigues  & Iema  (2009).
The  CGTase  activity  (U/mL)  and  the  substrate
concentrations were as dependent (response) and
independent  variables,  respectively.  A matrix  of

factorial design 22 was constructed using CCD, re-
sulting in 11 assays. Two levels were chosen, one
superior  (+1)  and  one  inferior  (-1),  besides  the
center point (0) and two axial points (+1.41 and -
1.41). The central point was used with three repe-
titions for determining the methodological accu-
racy (Table 1). This model is represented by a sec-
ond-order polynomial regression:

where y is the predicted response of CGTase ac-
tivity;  X1 and  X2 are  code  forms  (cassava  peel
flour and corn steep liquor, respectively); b0 refers
to the intersection point; b1 and b2 are linear coef-
ficients;  b12 is  the  coefficient  of  double  interac-
tion; and b11 and b22 are quadratic coefficients. The
values of the studied levels were calculated by:

where, Xn is the encoded value; X is the real value
of the independent variable; X0 is the real value of
the central point; X+1 is the value of the superior
level, and X-1 is the value of the inferior level. The
results  presented  by  the  applied  experimental
model were assessed through the Statistica  soft-
ware release version 7.1, Stat Soft. Inc., USA.

Enzymatic activity

The CGTase activity was determined by a colori-
metric method using cyclodextrin-phenolphthalein
complex (CD-PHE) (Suzuki et al. 1990). The re-
action  mixture  containing  5.0  mL of  crude  en-
zyme extract (cell-free supernatant) and 5.0 ml of
1%  soluble  starch  solution  was  incubated  in  a
thermostated reactor at 55 °C, pH 8.0. The sam-
ples  of  0.5  ml  from  the  reaction  solution  were
withdrawn at 0, 3, 6, 9, and 12 minutes and inacti-
vated in boiling water for 5 minutes. Then, 2.5 mL
of  an  alcoholic  solution  of  phenolphthalein  (3
mM)  diluted  in  a  buffer  containing  600  mM
Na2CO3 and pH 10.5 was added. The absorbance
was read at 550 nm. CGTase production was ob-
served  by  the  decreasing  intensity  of  the  pink
reagent  due  to  the  formation  of  inclusion  com-
pounds of CDs with phenolphthalein. 

Cellular growth

After fermentation, the biomass was separated by
centrifugation at 5000 rpm for 30 minutes at 4 ºC.
The biomass was washed by suspending in 5 mL
of distilled water and centrifuged. After removing
the supernatant, the precipitate was re-suspended,

y =b0+b1 X 1+b2 X2 +b12 X 1 X 2+b11 X1
2
+b22 X 2

2

Xn=
(X −X0)

X +1−X−1
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and the optical density was measured at 600 nm.
The cellular growth was quantified by comparing
with the standardized curve based on dry mass x
optical density.

Determination  of  Total  Reducing  Sugar
(TRS)

The samples were subjected to an acid hydrolysis
in 2 M HCl. After boiling for 20 minutes, the sam-
ples were neutralized with 2 M NaOH. The total
reducing sugars were determined using 3,5-dini-
trosalicylic  acid  (DNS)  method  according  to
Miller (1959).

Determination of total protein

Total  protein  concentration  was  determined  by
Bradford method by adding 0.2 mL of the crude
enzyme extract to 2 mL of the Bradford reagent.
Absorbance  was  recorded  at  595  nm (Bradford
1976)

Partial  characterization  of  crude  enzyme
extract

The  optimum  temperature  for  CGTase  activity
was  determined  by  incubating  the  crude  extract
containing the enzyme in the range of 45 °C to 70
°C at pH 8.0. The thermal stability was evaluated
by incubating the crude enzyme extract at 50 °C,
55  °C,  and 60  °C in  a  thermostated  bath  for  5
hours. The determination of the optimal pH was
performed by using different buffers at 50 mM:
glycine-HCl pH 2.0-3.0;  sodium citrate  pH 3.0-
6.0; phosphate pH 6.0-8.0; Tris-HCl pH 8.0-9.0;
and glycine-NaOH pH 9.0-10.0. The influence of
metal ions was evaluated using the following so-

lutions prepared at 50 mM: CaCl2,  FeCl2,  NaCl,
ZnSO4,  EDTA,  KCl,  MnCl2,  CuSO4,  BaCl2,
HgCl2, and MgCl2. For control, the enzyme activ-
ity was performed using the supernatant without
the addition of salts to the reaction mixture.

Results

Table 1 shows the matrix of CCD 22 with the re-
sults of CGTase activity and biomass production
using cassava peel and corn steep liquor as sub-
strates,  diluted  in  cassava  wastewater  after  72
hours of fermentation along with the values pre-
dicted by the statistical model.

The  experimental  conditions  resulted  in  the
highest  values  of  CGTase  activity  at  the  center
point (9, 10, and 11) with an average activity of
352.53 U/mL, using 1.5 g of  cassava peel flour
and 0.6 g of corn steep liquor. A similar produc-
tion was observed in the assay 7 (1.5 g of cassava
peel flour and 0.2 g of corn steep liquor) resulting
in 318.25 U/mL of CGTase activity (Table 1).

However, according statistical analysis of the
regression coefficients (Table 2), only the cassava
peel flour in the quadratic term was statistically
significant  at  95%  confidence  level  (p<0.05).
These results indicated that the only variable that
influenced  CGTase  activity  was  the  carbon
source. The nitrogen source (corn steep liquor) did
not influence the production of CGTase (p> 0.05),
which means that the variation in its concentration
had no effect on the enzymatic activity  within the
studied  concentration  range  (0.2  to  1.0  g).  The
values for Fcalc of 15.82 and R2 of 82.71% indi-
cated that the results were highly significant and 

Run Codified values Real values (g) CGTase activity (U/mL) Biomass (g/L)

X1 X2
Cassava peel

flour
Corn steep liquor Observed values Predicted values Observed values

Predicted
values

1 –1 –1 1.0 0.32 288.60 247.84 5.28 5.08
2 +1 –1 2.0 0.32 136.67 202.47 6.17 7.58
3 –1 +1 1.0 0.88 73.36 43.35 12.85 11.86
4 +1 +1 2.0 0.88 122.54 199.10 5.63 6.25
5 –1.41 0 0.8 0.60 15.45 72.90 8.51 9.43
6 +1.41 0 2.2 0.60 244.20 150.94 8.59 7.23
7 0 –1.41 1.5 0.20 318.25 307.95 5.90 5.12
8 0 +1.41 1.5 1.00 186.48 160.97 8.64 8.98
9 0 0 1.5 0.60 340.99 352.53 7.24 6.96
10 0 0 1.5 0.60 356.97 352.53 6.97 6.96
11 0 0 1.5 0.60 359.64 352.53 6.67 6.96

X1= Cassava peel flour; X2= Corn steep liquor

Tabla 1. Matriz del Diseño Central Compuesto Rotativo 22 que muestra valores independientes y respuestas de B. trypoxylicola SM–02 en
fermentación sumergida a 35 ºC y 150 rpm durante 72 h.

Table 1. Matrix of Central Composite Design 22 showing independent values and responses  by  B. trypoxylicola SM–02 in submerged
fermentation at 35 ºC and 150 rpm for 72 h.
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Factors
Regression
coefficient

Standard
error t(5) p-value

Mean 352.53 41.40 8.52 0.000367

Cassava peel flour (*L) 27.59 25.35 1.09 0.326070

Cassava peel flour (**Q) –120.31 30.18 –3.99 0.010459

Corn steep liquor (L) –51.97 25.35 –2.05 0.095678

Corn steep liquor  (Q) –59.04 30.18 –1.96 0.107785

Cassava peel flour ×
corn steep liquor

50.28 35.85 1.40 0.219758

*L=Linear; **Q=Quadratic; R2=0,8271

Tabla 2. Análisis de regresión de la producción de CGTasa por B.
trypoxylicola SM–02 en fermentación sumergida a 35 ºC y 150
rpm durante 72 h utilizando aguas residuales de yuca, harina de
cascara de yuca  y licor de maíz fermentado como sustratos.

Table  2. Regression  analysis  of  CGTase  production  by  B.
trypoxylicola SM–02 in submerged fermentation at 35 ºC y 150
rpm for 72 h using cassava wastewater, cassava peel flour,  and
corn steep liquor as substrates.

Factors
Freedom
degree

Sum of the
squares (SS)

Means squares
(MS)

Fcalc

Regression 3 174414.0 58138.0 15.82a

Residue 7 25709.4 3672.8

Total 10 148704.6

a Significant at 5% probability; R2: 0.8271  

Tabla 3. Análisis de varianza para la producción de CGTasa de B.
trypoxylicola SM–02 en fermentación sumergida a 35 °C y 150
rpm durante 72 h utilizando aguas residuales de yuca, harina de
cascara de yuca y licor de maíz fermentado como sustratos.

Table  3. Analysis  of  variance  for  CGTase  production  by  B.
trypoxylicola SM–02 in submerged fermentation at 35 ºC y 150
for  72  h  rpm  using  cassava  wastewater,  cassava  wastewater,
cassava peel flour, and corn steep liquor as substrates.

Figura 1. Diagrama de contorno para la producción de CGTasa
de B. trypoxylicola SM–02 por fermentación sumergida con aguas
residuales  de  yuca,  harina  cáscara  de  yuca  y  licor  de  maíz
fermentado a 35 °C y 150 rpm durante 72 h. La figura muestra
desde  la  producción  de  CGTasa  más  pequeña  (verde)  hasta  la
mayor (rojo).

Figure  1. Contour  plot  for  CGTase  production  from  B.
trypoxylicola SM–02 by submerged fermentation using cassava
wastewater, cassava peel flour  and corn steep liquor as substrates
at 35 °C and 150 rpm for 72 h. The figure shows the production of
CGTase from the smallest (green) to the largest (red) value.

the  correlation  between  the  predicted  and
observed values was good (Table 3). In this way,
it can be affirmed that the results fit well with the
model and the coefficient regression values could
be used to generate the model equation:

The equation generated by the model is impor-
tant because, through it, it is possible to derive the
optimal conditions to determine the critical point
(Rodrigues & Iema, 2009). The chart of contour
curves  (Fig.  1)  confirmed  these  results  to  be
within the range studied for the dependent vari-
ables,  and the center  point  region  presented  the
highest  CGTase  activity.  Response  Surface
Methodology is very useful for the modeling and
the  analysis  of  problems,  where  the  outcome is
influenced by multiple variables and the objective
is  the  response  optimization  (Maddipati  et  al.
2011).  Furthermore,  this  type  of  chart  allows
viewing a wide range of substrate concentrations
where the enzyme production remains high. This
is of importance when using wastes or agro-indus-
trial  byproducts  as  substrates  for  fermentation
processes,  which show considerable  variation in
its composition.

Under optimized conditions, CGTase produc-
tion follows the exponential growth phase of  B.
trypoxylicola SM-02 until 72 hours of fermenta-
tion  after  which,  there  was  a  downward  trend
coinciding with the decline of cellular growth. At
the same time, almost  complete consumption of
sugars was noted, which may be attributed to the
metabolic activity of the bacteria after 120 hours
(Fig. 2).

Partial  characterization  of  enzyme  crude
extract

Physical  and chemical  characterization  was per-
formed using the crude enzyme extract obtained
under optimized fermentation conditions. The en-
zyme displayed  a  reduced  activity  in  acidic  pH
ranging from 2.0 to 6.0. At the pH values 7.0 and
8.0, CGTase exhibited a relative activity of 80%
with an optimum pH at  8.0.  At pH 9.0, the en-
zyme activity decreased but remained above 50%
until pH 10.0 (Fig. 3). 

The  optimum  temperature  of  CGTase  pro-
duced by B. trypoxylicola SM-02 was 55 °C with
50% relative activity at 50, 60 and 65 °C and was
completely inactivated at 70 °C (Fig. 4A). In rela-
tion to  thermal  stability,  the activity  of  CGTase

Enzymaticactivity=352.53+27.59 X 1−120.31 X 1
2
−51.97X 2−59.04 X 2

2
+50.28X 1 X2
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Figura 2. Fermentación sumergida en el transcurso del  tiempo
por B. trypoxylicola SM–02 con aguas residuales de yuca, harina
cáscara de yuca y licor de maíz fermentado como substratos a 35
°C y 150 rpm durante 120 h.

Figure  2. Submerged  fermentation  time-course  of  B.  trypo-
xylicola SM–02 using cassava wastewater, cassava peel flour, and
corn steep liquor  as substrates at 35 °C and 150 rpm for 120 h.

Figura 3. pH óptimo de la actividad CGTasa de B. trypoxylicola
SM-02 cultivada en aguas residuales de yuca, HCY y LMF como
sustratos  a  35  ºC  y  150  rpm.  La  fuerza  iónica  para  todos  los
tampones fue de 50 mM.

Figure 3. Optimum pH of CGTase activity  of  B. trypoxylicola
SM-02 grown on cassava wastewater, CPF, and CSL as substrates
at 35 °C and 150 rpm. The ionic strength for all buffers was 50
mM.

from B. trypoxylicola SM-02 presented a relative
activity of 75%, on average, between 30 minutes
and 1 hour of incubation, and about 60% after 2
hours. After 3 hours the enzyme still showed a rel-
ative activity of about 40% at 55 ºC (Fig. 4B).

Assessing  the  influence  of  ions  (Table  4),  it
was observed that  enzyme production was posi-
tively influenced by CaCl2, which resulted in an
increase in the enzyme activity compared with the
control.  The  enzyme  was  weakly  inhibited  by
MgCl2,  FeCl2,  NaCl,  and  CuSO4 reaching  an
activity  almost  next  to  the  control,  and  was
strongly inhibited by EDTA, BaCl2 resulting in a
drop of enzyme activity to below 75% (Table 4).

Discussion

Although  there  are  reports  of  the  use  of  the
residues  from cassava  processing,  i.e.,  peel  and
cassava wastewater in the production of other en-
zymes such as amylase, protease, and lipase (Bar-
ros et al. 2013), these residues have not been used
for CGTase production.  Agro-industry substrates
are cited in the literature as best for the CGTase
production, compared with the conventional syn-
thetic substrates, whose origin is corn starch. Cu-
colo  et al. (2006) described the highest CGTase
production  using  tapioca  flour  than  the  soluble
starch. Similarly, our group also observed a high
CGTase production in  cassava flour by  Bacillus
sp. SM-02 (Coelho  et al. 2016). This shows that
the substrates of agricultural origin are consider-
ably efficient for the enzyme production, possibly

Figura 4. Temperatura óptima (a) y estabilidad térmica (b) de CGTasa producida por B. trypoxylicola SM-02 cultivada en aguas residuales
de yuca, HCY y LMF como sustratos a 35 ºC y 150 rpm durante 72 h. 

Figure 4. Optimum temperature  (a) and thermal  stability  (b)  of  CGTase  produced by  B. trypoxylicola  SM-02 02 grown on cassava
wastewater, CPF, and CSL as substrates at 35 °C and 150 rpm for 72h.
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due to a complete chemical composition of macro
and micronutrients, which supplement the fermen-
tation medium and consequently increase the CG-
Tase production. According to Alves-Prado  et al.
(2008)  the  concentration  of  lipids  in  the  starch
should be considered, since it is a factor that inter-
feres in the production of CGTase. Cassava starch
presents low amount of lipids and does not form
amylose-lipid  complexes  in  root  and  tuber
starches, unlike in cereal starches. In addition, less
content of amylose (between 17% and 20%) than
cereal  starch (25 to  30%) may explain the high
CGTase  production  in  substrates  derived  from
cassava (Moorthy et al. 2006, Weber  et al. 2009,
Senanayake et al. 2013).

The nitrogen source is an important element in
the  CGTase  production,  especially  when  starch
derived from cassava is used. This is due to the
fact that there is a reduction in the enzyme pro-
duction if  this  substrate  is  used  without  supple-
mentation with peptone and yeast extract (Cucolo
et al. 2006). Organic nitrogen sources have been
found to be most suitable compared to the inor-
ganic ones and peptone and yeast extract are the
most  used  nitrogen  sources  (Mahat  et  al. 2004,
Ibrahim  et al. 2005, Cucolo  et al. 2006, Avci &
Dömnez 2009). In this work, however, we chose
to use the corn steep liquor as an interesting alter-
native due to its low cost, as it is a residue from
the corn processing industry. The corn steep liquor
is a nitrogen source widely used in fermentation
processes  for  the  production  of  different  sub-
stances like enzymes (cellulase, laccase) (Wang et
al. 2014, Ladeira et al. 2015), organic acids (suc-
cinic acid, lactic acid) (Lee  et al. 2000, Xi  et al.
2013,  Wang  et  al. 2015),  fuels  (butanediol,
ethanol) (Maddipati et al. 2011, Yang et al. 2013)
and  exopolysaccharides  (Sharma  et  al. 2013).
Corn steep liquor contains a mixture of reducing
sugars and amino acids as well as water-soluble
vitamins and minerals and, therefore, serves as an
excellent nutrient source (Xiao  et al. 2012, Xiao
et al. 2013).

The profile  of  submerged fermentation  time-
course of  B. trypoxylicola SM-02 (Fig. 2) shows
that the decrease in the cellular growth and conse-
quently the enzyme activity after 72 hours seems
to be related to the low concentration of sugars in
the medium. This suggests that it is necessary to
maintain  a  high  concentration  of  sugars  in  the
medium for high enzyme production, which can
be obtained with the use of fed-batch fermentation

processes that constantly feed the system with the
substrates. A similar kinetic behavior was obser-
ved in other studies on CGTase production with
different species of  Bacillus such as  Bacillus sp.
H25 and Bacillus sp. subgroup alcalophilus (E16,
H27, and H54) (Alves-Prado  et al. 2002), where
the  enzyme  synthesis  began  in  the  exponential
phase;  however,  the  maximum  production  was
achieved in the stationary phase.

B.  trypoxylicola SM-02 showed an  optimum
pH for the enzymatic activity in an alkaline pH
range,  indicating  that  this  bacterium  is  alka-
lophilic (Fig. 3). CGTases produced by different
species of  Bacillus exhibited an optimum pH in
the neutral and alkaline range with a few excep-
tions in the acidic range (Alves-Prado et al. 2002,
Freitas  et al. 2004, De Souza et al. 2013, Blanco
et al. 2014). CGTase production in alkaline pH is
advantageous because it reduces the tendency of
starch gelatinization,  which decreases the sticki-
ness of starch at high concentration in the fermen-
tation  medium (Goo  et  al. 2014).  Although  the
catalytic  properties  of  CGTase  are  strongly
affected  by the  composition of  the  fermentation
medium, the optimum temperature between 50 °C
and 55 °C is a characteristic of several species of
Bacillus producing  CGTase  using  different  sub-
strates (Gawande et al. 2003, Freitas  et al. 2004,
Cucolo et al. 2006, Ibrahim et al. 2012). 

The thermal stability of CGTase from  B. try-
poxylicola SM-02 was very good, remained above
of 50% after  2  hours  (Fig.  4).  This  behavior is
similar  to  that  described  for  CGTase  de  B. try-
poxylicola SM-02 obtained using cassava flour as
a carbon source (Coelho et al., 2016). Thermosta-
bility  is  a  further  desired property of  a  CGTase
since  a  higher  reaction  temperature  reduces  the
viscosity of the starch substrate and can result in
higher  yields  of  ciyclodextrin  (Sonnendecker  &
Zimmermann 2019). 

The  information  about  ions  that  affect  the
enzymatic activity is important for the choice of
substrates  used  in  the  fermentation  process
because depending on the composition, they may
positively or negatively influence the enzyme syn-
thesis.  It  is  already  a  well-established  fact  that
some ions act as essential enzymatic cofactors for
the process of catalysis in some enzymes. The lit-
erature mentions the ions Mn2+ and Mg2+ as posi-
tive inducers of CGTase production by species of
Bacillus,  whereas  Cu,  Co,  and  Hg  inhibit  the
enzyme activity. Some ions such as Fe, Ba2+ and
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Zn displayed both an increase and decrease in the
cyclization activity of the enzyme depending on
the  Bacillus species (Freitas  et al. 2004, Arya &
Srivastava  2006,  Singh  et  al. 2010,  Martínez-
Mora et al. 2012, Ibrahim et al. 2012). For B. try-
poxylicola SM-02,  CaCl2 was  the  only  salt  that
increased  enzymatic  activity  (Table  4).  CGTase
belongs  to  the α-amylase  superfamily and  these
enzymes  have  regions  that  contain  highly  con-
served amino acid residues located in or close to
the active site, and that act directly on the cleav-
age of  the glycosidic  bond, bonding to  the sub-
strate, stabilizing the transition state and binding
of calcium ions. Some of these enzymes, includ-
ing CGTase, contain aspartic acid residues respon-
sible  for  binding  calcium  ions  and,  apparently,
these conserved sequences are related to the main-
tenance  of  the  enzyme's  catalytic  site  structure
(Janecek,  2002,  Matsuura  2002).  In  addition,
Saboury (2002), studying the interaction of Bacil-
lus  amyloliquefaciens α-amylase  (BAA)  with
divalent calcium observed that the binding of cal-
cium stabilized the enzyme against surfactant and
thermal  denaturation,  preventing  spontaneous
decrease  in  biological  activity  of  α-amylase.
EDTA, in turn, is a chelating agent that can com-
bine with several mineral ions, including calcium,
which may explain the decrease of about 70% of
the enzymatic activity in the presence of this com-
pound. 

Conclusions

Cassava peel four, cassava wastewater, and corn
steep  liquor  could  be  considered  as  promising
substrates for CGTase production by B. trypoxyli-
cola SM-02 by submerged fermentation. The pro-
duced enzyme exhibited attractive features for in-
dustrial applications. It has an optimum alkaline
pH that provides a lower risk of contamination by
most  competing  microorganisms.  Furthermore,
the optimum temperature of CGTase (55 °C) pro-
duced  by  B.  trypoxylicola SM-02  and  its  good
thermostability facilitate the use of this enzyme in
industrial  processes.  The  use  of  cassava  waste-
water as a substrate for the fermentation processes
would also help reduce the environmental impacts
caused by the inappropriate disposal of this waste
into the environment and the use of cassava peel
can generate a new alternative of this residue. It is
possible to decrease the CGTase production cost
because the carbon sources involved in the study

are characterized as abundant and low-cost and, in
addition, have a high content of nutrients, allow-
ing  the  generation  of  economically  viable  pro-
cesses. 
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