A new morpho-functional classification of the Fallopian tube based on its three-dimensional myoarchitecture

U. Muglia1 and P.M. Motta2

1Institute of Veterinary Anatomy 1, University of Messina, Italy and
2Department of Anatomy, University of Rome "La Sapienza", Rome, Italy

Summary. The recent direct observations, under scanning electron microscopy (SEM), of the three-dimensional architecture of myosalpinx in different mammals allows us classify salpinxes according to the myoarchitecture of their tubo-uterine junction (TUJ) and isthmus segments.

Based upon the myoarchitecture of the outer wall of the TUJ we could find barrier-like species (rat and sow), sphincter-like species type a (rabbit and ewe) and sphincter-like species type b (cow and woman). The different architecture of TUJ can be explained by the different nature of the mating process. Based upon the myoarchitecture of the isthmus we could distinguish type 1 (rat) and type 2 (rabbit, ewe, sow, cow and woman) salpinxes. In the latter the close fusion of musculature deriving from the meso (extrinsic musculature) with the musculature of salpinx (intrinsic musculature) suggests the existence of a unique mesosalpinx contractile system.

The myosalpinx is mostly made up of a single network of muscular fibers. Such a plexiform structure, owing to the uneven distribution of fibers, rather than producing a series of regular contraction waves, is more likely to generate random contraction waves. The random propagation of muscular network contraction may deform the plexiform wall of the myosalpinx causing the stirring of tubal contents. By such a stirring movement the contact between hormones and nutrients and the eggs or embryos is intensified, thus favoring a correct fertilization and early embryo development. Taken all together, these systematic results probably suggest an additional and rather new function for the musculature of the tube, namely to increase fertility in a large number of species.

Key words: Fallopian tubes, Microanatomy, Smooth muscle cells, Scanning electron microscopy

Introduction

The first description of the oviductal musculature (myosalpinx) in the woman dates back to Williams (1891), even though the earliest data on its architecture came from successive observations carried out on histological sections by Andersen (1927, 1928) on the sow. For nearly a century, from the early results up until 1970, numerous data on the myosalpinx architecture of a large number of species were reported. These were recorded only on the basis of bidimensional observations of sections under the light microscope (LM) and transmission electron microscopy (TEM). Such results were mainly based on the concept that the myosalpinx architecture is organized in stratified muscular layers as occurs in the intestine muscular wall. Such layers were described as variable in number and were constituted by muscular fibers (grouped or not in bundles) having different orientation. The direct observations, under scanning electron microscopy (SEM), of the three-dimensional architecture of the myosalpinx, made possible by a technique involving extraction of interstitial connective tissue and microdissection by ultrasounds (Takahashi-Iwanaga and Fujita, 1986; Low, 1989; Muglia et al., 1991a), revealed that the myosalpinx architecture is organized in stratified muscular layers, independently from the various stages of estrous cycle (Muglia et al., 1991b), is commonly made up of a single network of muscular fibers (Muglia et al., 1992).
A new classification of Fallopian tube based on its myoarchitecture

where the arrangement of smooth muscles is plexiform, the resulting contraction does not allow us to hypothesize a function of regular peristaltic movement (Gosling, 1979). Furthermore, the most recent studies on the myosalpinx architecture emphasize the need to clarify if and to what extent the musculature deriving from the mesosalpinx, defined as extrinsic (salpinx) musculature by a number of Authors, is integrated in the salpinx musculature (intrinsic musculature). The numerous and often contradictory opinions on this matter found in the literature are discussed hereafter. These different descriptions, mostly taken from indirect observations by light and transmission microscopy and directly by scanning electron microscopy, are reported with the aim to provide a synthesis among various conflicting data.

Literature data on the myosalpinx architecture

Woman

Isthmus

According to the wide literature on the subject in woman, the indirect observations of sections under light and transmission electron microscopy, showed that the isthmus architecture is constituted by two or three variously oriented muscular fiber layers.

In particular, according to Nilsson and Reinius (1969) and Pauerstein et al. (1970), the musculature of the isthmus is organized into three layers: an outer longitudinal or spiral extrinsic one (Verdugo, 1986), an intermediate circular or plexiform one (Ferraris, 1947) and an innermost longitudinal layer. In other reports, the existence of an inner longitudinal (David and Czernobilsky, 1968; Fawcett, 1986), or outer longitudinal layer (Beck and Boots, 1974) was not mentioned.

Early studies (Fumagalli, 1949; Kipfer, 1950) by the use of a three-dimensional (3-D) reconstruction based upon LM observations, as reviewed by Horstmann and Stegner (1966), suggested that the musculature of the intermediate layer consisted of two systems of intermingled spiral fibers arranged in a clockwise or anticlockwise manner. These authors described a fusion between the musculature deriving from the mesosalpinx (extrinsic musculature) and intrinsic musculature.

The direct observations (Fig. 1) by means of SEM were limited to samples in which the mesosalpinx musculature component (extrinsic musculature) was lacking. The intrinsic musculature was composed of irregularly running bundles of smooth muscle cells (SMC), changing their orientation within the myosalpinx and displaying longitudinal, oblique and circular directions. The muscular bundles anastomosed and intermingled with other bundles running at different levels in the tube wall actually giving rise to a wide and complex muscular network in which no distinct layers were recognized (Vizza et al., 1991).

Ampulla

In the majority of studies based on the indirect observations a clear cut layering of SMC bundles was reported as follows: an outer longitudinal layer; an inner circular layer; and a discontinuous innermost longitudinal layer (David and Czernobilsky, 1968; Nilsson and Reinius, 1969; Woodruff and Pauerstein, 1969; Pauerstein et al., 1970, 1974; Beck and Boots, 1974; Pauerstein and Eddy, 1979; Verdugo, 1986; Hunter, 1988; Brosens and Gordon, 1990; Fujii et al., 1990; Fawcett, 1986). In other studies it was noted that the SMC bundles of the inner layer were not precisely circularly arranged. Therefore, it was suggested that two fiber systems were present: clockwise and counterclockwise spiral fibers intermingled to form a plexiform structure (Ferraris, 1947; Fumagalli, 1949; Kipfer, 1950; Stange, 1952a,b; Horstmann and Stegner, 1966). In particular, Stange (1952a,b) postulated that, because of its plexiform arrangement, the myosalpinx of the pre-ampulla and the fimbria could act at the same time as a sphincter and a peristaltic pump involved in ovum capture. Daniel et al. (1975a), even having reported longitudinal and circular SMC bundles, denied the existence of two clear-cut concentric layers in the ampulla of the woman.

The direct observations (Fig. 1) (Vizza et al., 1995), showed a muscular wall made up of a continuous network of randomly anastomosed SMC bundles with a multidirectional arrangement.

1: in woman the extramural portion of tubo-uterine junction is generally considered as a part of isthmic segment
A new classification of Fallopian tube based on its myoarchitecture

Cow

Tubo-uterine junction (TUJ) Isthmus and Ampulla

In the cow the *indirect* observations showed, according to Bignardi (1948), muscle fibers forming outer circular and inner discontinuous longitudinal or spiral layers in the extramural portion of the TUJ. These layers, which were not distinctly separated, gradually decreased in the isthmus and were completely lacking at the end of the ampulla. Schilling (1962) suggested that the myosalpinx of Ungulates may be constituted by spiral fibers running deeper from the surface towards the base of mucous folds. The variable pitch of such spirals would account for the differences in the architecture of the myosalpinx between the tubal segments. Weeth and Herman (1952) described an outermost circular and an innermost longitudinal layer in TUJ, isthmus and ampulla. Wrobel et al. (1993) reported in the extramural portion of the TUJ an incomplete outer system of mostly longitudinal isolated bundles intermingled with subserosal muscle bundles (*extrinsic* musculature?) having a variable direction and a thick intermediate circular or spiral layer and an inner longitudinal layer.

The *direct* observations (Fig. 2) showed *extrinsic* muscle fibers in the TUJ (Muglia et al., 1997a) joined in distinct, thick bundles which followed a roughly longitudinal or oblique course. These bundles originated from the mesosalpinx, reached and ran along the surface of the underlying *intrinsic* musculature, where they unravelled in many points. The bundles often bifurcated and anastomosed along their course forming a network. In the isthmus the architecture appeared constituted by elongated, quite regularly outlined muscle fibers joining in thick, isolated bundles which were more numerous than in the TUJ and leaned against the periphery of the *intrinsic* musculature. Before merging into the latter, the bundles often bifurcated and anastomosed, thus forming a network structure in some areas of intrinsic myosalpinx. In the ampulla the fibers were rare and isolated. In the *intrinsic* musculature of extramural portion of the TUJ, in the isthmus and in the ampulla the myosalpinx showed oblique bundles of variable orientation and length, which were loosely distributed in the TUJ and densely packed in both isthmus and ampulla. These bundles intersected and merged into the surrounding musculature forming a complex network.

Ewe

Tubo-uterine junction (TUJ), Isthmus and Ampulla

Studies performed by *indirect* observations of the architecture of myosalpinx revealed muscle fibers originating from the mesosalpinx (*extrinsic* musculature) along with fibers proper to the tube (*intrinsic* musculature) (Bignardi, 1948). The former were arranged in isolated, longitudinal bundles immersed in the dense subperitoneal connective tissue. The latter formed an outer circular and inner longitudinal layer in the extra-mural portion of the TUJ and in the isthmus, whereas they had a longitudinal course in the ampulla. Schilling (1962) suggested that the myosalpinx of Ungulates was probably constituted by spiral fibers running deeper from the surface towards the base of mucous folds. The variable pitch of such muscular spirals would account for the differences in the architecture of the myosalpinx between the tubal segments observed in transverse section under the light microscopy. Beck and Boots (1974) described two distinct thin, longitudinal muscle layers, an outermost
and an innermost one, enveloping an intermediate thick, circular layer in the isthmus and ampulla of the goat myosalpinx.

The direct observations of the myosalpinx showed an **extrinsic** and intrinsic musculature (Fig. 2) (Muglia et al., 1996b). In the **extrinsic** musculature, the TUJ fibers joined in flattened bundles which followed an almost longitudinal course. Furthermore, in this area they intersected at multiple plane levels remaining independent from the underlying **intrinsic** musculature. On the contrary, in the isthmus, in which this component appeared reduced in thickness if compared to that present in the TUJ, the sparse oblique bundles, seen at the periphery of the intrinsic musculature, leaned against it and frequently merged into it. The intrinsic musculature showed the characteristic architecture of each tubal segment. In the TUJ it was made up of densely packed, elongated fibers, which thinned out at their extremities. In this segment, the muscle fibers were arranged in concentric, tightly assembled monolayered shells which formed a compact coat. Below these fibers, loosely distributed, ribbon-like fibers could be seen following a rather longitudinal course and intersecting at multiple planes. Such fibers decreased in number as they gradually reached the base of mucous folds. In the isthmus the muscular coat, found in the TUJ, gave origin to wide, flattened, oblique bundles of fibers intersecting (one another) and running across multiple planes. In proximity of the ampulla (ampullary-isthmic transitional zone), such bundles followed multiple spatial directions and, as they reached deep areas far from the surface, they showed unravelled extremities merging into the surrounding musculature. In the ampulla the elongated fibers joined, in small numbers, into short, variably oriented bundles which delimited broad spaces. The extremities of these bundles merged into the surrounding musculature, after changing both direction and course plane, thus giving rise to a plexiform structure.

Sow

Tubo-uterine junction (TUJ) Isthmus and Ampulla

In the sow the **indirect** observations of the myosalpinx revealed an outer longitudinal muscular and an inner circular layer, more or less developed in the isthmus and ampulla (Andersen, 1927, 1928; Beck and Boots, 1974). In other studies (Bignardi, 1948), two longitudinal layers originating from the mesosalpinx (**extrinsic** musculature) were found in all tubal segments (TUJ, isthmus and ampulla): an innermost and an outermost layer, enveloping an intermediate circular layer formed by muscle fibers peculiar to the tube (**intrinsic** musculature). Schilling (1962) suggested that the myosalpinx of Ungulates, and particularly of the sow, might be constituted by spiral fibers running deeper from the surface of the organ towards the base of mucous folds. The variable width of such spirals would account for the differences in the architecture of the myosalpinx between the tubal segments.

Our **direct** observations (Muglia et al., 1997b) revealed a gradual transformation from the **extrinsic** to the **intrinsic** musculature in the TUJ (Fig. 2). This depended on the change in cell shape which was regular, spindle-shaped in **extrinsic** and irregular in the **extrinsic** musculature. **Extrinsic** and **intrinsic** musculature formed a unique dense muscular coat. In the **extrinsic** musculature of isthmus and ampulla the SMC became elongated and joined in short bundles, loosely distributed, merging into the deep **intrinsic** musculature, after changing both direction and course plane, participating to the **intrinsic** muscular architecture. Thus, the structure of both **extrinsic** and **intrinsic** musculature of isthmus and ampulla was characteristically plexiform.

Rabbit

Indirect observations

Tubo-uterine junction (TUJ), Isthmus and Ampulla. According to Pauerstein et al. (1970) the myosalpinx consisted of three muscular layers: an outer longitudinal, an intermediate circular and an inner longitudinal one. All these were present throughout the entire length of the salpinx. David and Czernobilsky (1968) reported only two layers in the isthmus: an outer longitudinal and an inner circular one. On the contrary, in other studies (Nilsson and Reinius, 1969), the outer layer was reported to be circular and the inner one longitudinal. Moreover, in these studies a solely circular arrangement of muscle fibers in the ampulla was described, whereas Kushiya (1968) reported two distinct layers in this segment: an outer longitudinal and an inner circular one.

Direct observations (Fig. 2)

TUJ. The extramural portion of the myosalpinx showed outer longitudinal muscular bundles arising from the outer longitudinal layer of the uterus (Muglia et al., 1991b). Such bundles ran parallel to each other as well as to the major axis of the salpinx. In such a way, they formed a well-defined continuous muscular layer extending towards the ampulla and enveloping the proximal portion of the isthmus. A vascular coat - running for the same length and whose vessels anastomosed to form an uneven network beneath the longitudinal layer - was present.

The myosalpinx underlying the vascular network was made up by muscular bundles running deeper from the surface towards the base of the mucous folds. At the most superficial level these bundles followed an uneven circular arrangement and often bifurcated. At a deeper level the same bundles appeared even more irregular, anastomosing repeatedly into several branches that showed different directions thus generating a plexiform arrangement. Some bundles reached the base of the mucous folds and formed wide curves often having opposite concavities, following a rather longitudinal
A new classification of Fallopian tube based on its myoarchitecture

discontinuous pattern.

Isthmus. The isthmic myosalpinx revealed throughout its length some superficial longitudinal muscular strips, arising from the mesosalpinx (extrinsic musculature). These enveloped the underlying intrinsic muscular tissue, leaned against and frequently merged into it. The intrinsic musculature showed the same structure as at the TUJ, except for the outer longitudinal layer originating from the uterus and the underlying vascular plexus. Both layers were lacking in the isthmus but were present in the TUJ.

Ampulla. A plexiform pattern was noted in this tract except for some isolated superficial strips of extrinsic musculature that ran longitudinally as they did in the Isthmus.

Rat

Tubo-uterine Junction (TUJ), Isthmus and Ampulla

According to Nilsson and Reinius (1969), by means of the indirect observations, the SMC of myosalpinx in the rat were arranged into a coat consisting mostly of circularly arranged fibers in both TUJ and isthmus. In the former, an outer longitudinal layer arising directly from the uterus occurred; at the ampullar and preampullar level it was constituted by one to three longitudinal layers. On the other hand, Beck and Boots (1974) reported two thin longitudinal layers enveloping a third intermediate circular layer at both the isthmic and ampullar level, with the outer longitudinal layer lacking in the infundibulum.

The direct observations (Fig.3) allowed us (Muglia et al., 1996a) to distinguish, within the myosalpinx of the rat, two muscular components independent from each other. One was located within the subperitoneal connective tissue of mesosalpinx (extrinsic musculature) and the other one was peculiar to the salpinx (intrinsic musculature). The fibers of the extrinsic musculature, at the TUJ, were oriented obliquely with respect to the major axis of the salpinx and formed an incomplete, wide spiral layer that enveloped the salpinx. On the other hand, in the isthmus and ampulla these fibers ran tortuously, generating characteristic whorl-like structures. In the intrinsic musculature, SMC were packed together and arranged into concentric, monolayered shells tightly assembled to form a coat. At the most superficial level the fibers followed a circular course, whereas at the deepest levels they appeared arranged into a plexiform structure. Furthermore, only in the isthmus, on the surface of the intrinsic musculature, ring-like systems of SMC fibers surrounding the elbow-shaped folds of tubal loops were observed2.

Discussion

It is our opinion that the contradictory results and interpretations found in the literature on the myosalpinx architecture of most mammals mostly depends upon the fact that they were obtained from observations of histological sections. These data, only based on bidimensional parameters, do not provide a correct and exhaustive 3-D description. In fact, in these studies the muscle fiber bundles appear obliquely, longitudinally or unevenly circularly arranged in relation to the percentage of fibers, with different spatial orientation, present in the planes of section. These, in turn, are only very rarely perfectly transverse, especially in a tortuous salpinx such as that of some species (e.g. rat). Moreover, the 3-D reconstruction based on serial sections also reveals serious limitations due to the difficulty of following the course of each fiber bundle. On the basis of these considerations, we believe that the data directly obtained by using the SEM are not conflicting with, and do not invalidate those early reported in the literature. On the contrary, by completing and integrating these ones, they

Fig. 3. The diagrams summarize the 3-D architecture of the myosalpinx in the rat as revealed by SEM after maceration. From the top to the bottom: outer level, middle level and inner level. Red: extrinsic musculature, blue: some details of intrinsic musculature. J: extramural segment of the TUJ; I: Isthmus; jia: Isthmic-ampullary junction; A: Ampulla; arrows: mesosalpinx.

2: the salpinx in the rat is a coiled organ (Nilsson and Reinus, 1969).
provide a clearer micro-topographical 3-D view of the mammalian myosalpinx architecture.

The availability of myosalpinx three-dimensional models as revealed by these more recent studies, which provide greater details with respect to the early observations of the past, offers the opportunity: 1) to classify the real 3-D morphological characteristics of these structures; 2) to more readily interpret these 3-D data from a functional point of view. Thereby, the studies offer an important starting point to discuss more properly some data on the physiology of tubal transport.

Classification of the mammalian salpinx based on the 3-D myoarchitecture and related functional significance

Tubo-uterine junction (Table 1)

On the basis of the features of the myoarchitecture of the outer wall of the TUJ we can distinguish: a) **barrier-like species** [e.g. rat (Fig. 4A) and sow] characterized by a robust musculature rich in densely packed SMC fibers; and b) **sphincter-like species**. Among the latter, there are species [such as the rabbit and ewe (Fig. 4B)] characterized by a geometrically organized myoarchitecture. In these animals the *intrinsic* and *extrinsic* musculature are independent (sphincter-like type a). Other species such as cow (Fig. 4C) and woman, characteristically show a plexiform tubal myoarchitecture in which the *intrinsic* and the *extrinsic* musculature are closely interwoven (sphincter-like type b). As in other segments of the salpinx, the more or less close relation of *intrinsic* and *extrinsic* musculature, found in the species belonging to types a and b, produces a different degree of differentiation from the intrinsic musculature. In particular, the specialization of the intrinsic musculature is inversely related to its integration with the *extrinsic* musculature and vice versa.

The TUJ has the function of preventing and actively controlling, particularly in species with intrauterine

<table>
<thead>
<tr>
<th>TUJ</th>
<th>PECULIAR FEATURES</th>
<th>SPECIES</th>
<th>RELATION EXTRINSIC/INTRINSIC MUSCULATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrier-like</td>
<td>Packed structure</td>
<td>Rat</td>
<td>Independent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sow</td>
<td>Merged</td>
</tr>
<tr>
<td>Sphincter-like type a</td>
<td>Geometrically organized</td>
<td>Rabbit/Ewe</td>
<td>Independent</td>
</tr>
<tr>
<td>Sphincter-like type b</td>
<td>Plexiform</td>
<td>Woman/cow</td>
<td>Interwoven</td>
</tr>
<tr>
<td>Isthmus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 1</td>
<td>Organized in muscular structures</td>
<td>Rat</td>
<td>Independent</td>
</tr>
<tr>
<td>Type 2</td>
<td>Plexiform</td>
<td>Woman</td>
<td>Interwoven</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rabbit/Ewe</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sow/Cow</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Characteristics of TUJ and Isthmus according to myoarchitecture classification.

![Fig. 4. SEM of the tubo-uterine junction after maceration technique. A. Barrier-like salpinx (rat) with densely packed SMC fibers of intrinsic musculature. Bar: 25 μm. B. Sphincter-like type a salpinx (ewe) showing parallel fibers of the circular coat. Bar: 5 μm. C. Sphincter-like type b salpinx (cow). Bundles of the *extrinsic* musculature (b) merging (asterisks) into the underlying *intrinsic* musculature. Bar: 25 μm.](image-url)
A new classification of Fallopian tube based on its myoarchitecture

ejaculation, the extrusion of semen plasma and sperm number in the tube (Mann et al., 1956; Hunter and Hal, 1974; Polge, 1978; Einarsson et al., 1980), independently from the whole volume of plasma (Blandau, 1973). To better understand the myosalpinx architecture it is necessary to consider that the role played by the TUJ is notably influenced by different factors, which vary greatly among mammals. In particular, considering the passive transport of spermatozoa, important factors are: 1) the volume of ejaculate together with its physical and biochemical characteristics; 2) the site of semen deposition within the reproductive tract; 3) the anatomy and physiology of the cervix; and 4) the pattern of mating and the number of spermatozoa (Blandau, 1973).

In barrier-like species (sow, rat) semen deposition occurs in the uterine cavity. In the sow, the glans engages with the uterine cervix during mating (Rigby, 1967). As a result, the semen directly causes a stretching of uterine horns (Hunter, 1973). In the rat, although the penis does not reach the cervix, the semen (produced by a series of rapid and multiple copulations) stretches the uterine horns at the end of mating, similarly to that which occurs in the sow (Hartman and Ball, 1930; Blandau, 1945; Hunter, 1973). Consequently, in these two species (mostly in the sow), a thick muscular wall at the TUJ is required to resist the pressure of semen and to regulate the access of seminal plasma into the tube. This accounts

![Fig. 5. SEM of the isthmus after maceration technique. Type 1 salpinx. Rat (A): Uterine horn (U), isthmus (I). Extrinsic musculature (e), intrinsic musculature (i). Sonication broke the extrinsic musculature and maceration extracted the connective tissue joining extrinsic and intrinsic musculature. Bar: 1μm. Type 2 salpinx. Cow (B): Merging point (star) of extrinsic musculature into underlying intrinsic musculature. Bar: 25 μm. Woman (C) (Courtesy of Dr. E.Vizza), Sow (D), Ewe (E) and Rabbit (F): plexiform arrangement of intrinsic musculature. Bars: 100 μm; 25 μm; 50 μm; 50 μm.](image-url)
A new classification of Fallopian tube based on its myoarchitecture

for the thick sleeve of tightly packed muscular fibers, both in intrinsic and extrinsic musculature, constituting the TUJ wall. Where, as in the sow, the TUJ is more directly subjected to semen pressure during mating it also accounts for the fact that the extrinsic musculature fuses with the intrinsic one, resulting in a robust muscular coat. This suggests that the extrinsic musculature, by changing its morphology according to the specific tubal segment, may affect the activity of tubal intrinsic musculature.

On the other hand, in the rabbit, ruminants and woman, i.e. species that have an intravaginal deposition, uterus and uterine horns are not directly subjected to the pressure of semen. Therefore, a first selection of sperm is performed by the uterine cervix (Mann et al., 1956; Hunter, 1974; Polge, 1978). Thus, the TUJ, rather than functioning as a barrier against the flow of seminal plasma, may have a more active role in modulating the seminal flow, as is witnessed by its complex muscular architecture.

The different TUJ myoarchitecture, found between type a and type b species, may be related to the architecture of myometrium. For example, in the woman (type b) the structure is plexiform in the myometrium as it is in the myosalpinx (Vizza et al., 1997). The structural identity of myometrium and myosalpinx - which allows the consideration of the uterus and TUJ (including the outer-wall portion) as a unique morpho-functional entity - can be explained by the synergy of uterus and TUJ to transport sperm from the uterus to the isthmus through to the TUJ (Edgard and Asdell, 1960; Blandau, 1973). Therefore, it can be concluded that the different architecture of the myosalpinx found in various species at TUJ is closely related to the different nature of the mating process.

Isthmus and ampulla (Table 1)

On the basis of recent 3-D results on the myoarchitecture, as well as external morphological characteristics of the isthmic-ampullary segment, obtained both in situ and after removal from the pelvic cavity, the salpinx may be classified in two groups: type 1 and type2.

Type 1 salpinx. This is peculiar to the rat, whose extrinsic musculature is independent of the underlying intrinsic musculature (Fig. 5A). The salpinxes have a tortuous course. The myoarchitecture is organized in two layers. The superficial one is composed of the extrinsic musculature and the inner deeper one by the intrinsic musculature. The most superficial area of the intrinsic musculature is organized in distinct muscular structures [i.e. ring-like systems of SMC fibers surrounding the elbow-shaped folds of tubal loops (see Muglia et al., 1996a for further details)]. Data on the topography of the adrenergic innervation of the mesosalpinx in the rat (Brundin et al., 1969) prove that the extrinsic musculature possesses a notably higher concentration of adrenergic fibers compared to the intrinsic musculature.

These observations support the hypothesis of a micro-structural independence of the two muscular structures in type 1 salpinxes (rat).

Type 2 Salpinxes. The salpinx course is regular. The rather tortuous course of the salpinx described in vivo in a number of these species (Nilsson and Reinus, 1969) very likely depends on the relationship that these salpinxes have in situ with the meso to which they are attached. This type, in which the extrinsic and the intrinsic components are closely intermingled (Fig. 5B) is found in a rodent (rabbit), a number of Ungulates (ewe, sow, cow) and in the woman. The myosalpinx architecture is plexiform (Fig. 5C-F).

In most studies the isthmus is considered not only the area of sperm reservoir but also the segment which releases sperm at the time of ovulation in order to fertilize the egg (Hunter, 1986, 1987a; Hunter et al., 1987). For this reason the isthmus performs a primary role in the transport of gametes by means of: a) both a direct and indirect (through flow of tubal fluids) action of ciliary beating; and b) size variation of tubal lumen controlled by the contraction of myosalpinx as well as the edema of mucosa. The constriction of the tubal lumen serves to control the transport of sperm towards the ovary. In fact, in the pre-ovulatory phase it hinders the descent of the egg cell (which is greater in diameter than the spermatozoa), thus causing it to remain at the ampullary-isthmic junction in order to facilitate the encounter of the egg with the spermatozoa (Hunter, 1988). On the contrary, the width of the isthmus lumen is related to an increase of its caliber which, in turn, leads to an increase of the transport and the movement of the early embryo from the ovary to the uterus (Hunter, 1988). The sojourn of the egg in the isthmic-ampullary junction serves to increase its exposure to the still far resident spermatozoa in the TUJ (Hunter, 1977, 1987a). This also avoids its exposition to a relatively high concentration of vital spermatozoa in the intra-mural portion of the TUJ (Hunter, 1987b). The size variation in the tubal lumen, caused by the gradual contraction or relaxation of the myosalpinx, as well as the turgidity of the mucosa, is affected by the balance of ovarian steroids (Hunter, 1977), which in turn potentiate α and β adrenergic receptors of the musculature (Brundin, 1965) through a counter-flow mechanism from the ovarian vein towards the ovarian arteries and uterine tube (Hunter et al., 1983). These activities occur in such a way that the tube musculature can be regarded as a sort of a "physiological sphincter" which probably originates the tube locking mechanism. In type 2 salpinxes the close fusion of the extrinsic with the intrinsic musculature in the isthmus and, to some extent, in the ampulla is witness to the existence of a unique mesosalpinx contractile system. Considering that in type 1 salpinxes the extrinsic musculature does not directly contribute to make up the intrinsic architecture, it is logical to suggest that such functions are likely to be performed by the intrinsic musculature through specialized structures controlling the tubal lumen such as annular systems of...
These data were collected from zygotes and embryos, indicating that the extrinsic musculature is intensified, resulting in the pick-up of the oocyte from the ovary surface and the ovary surface and the tube locking phenomenon.

It is widely accepted that myosalpinx contractions propagate randomly, producing a backward-forward egg motion (Daniel et al., 1975a,b; Talo and Hodgson, 1978) and are transmitted, usually over short distances, from different pace-maker sites (Talo and Pulkinnen, 1982). These data were also confirmed by recording the random myoelectrical activity of the tube (Daniel et al., 1975a; Hodgson et al., 1977; Hodgson and Talo, 1978; Talo and Hodgson, 1978). A plexiform structure of myosalpinx, owing to the uneven distribution of SMC fibers, rather than originating a series of regular contraction waves, is more likely to produce random contraction waves. Therefore, the myosalpinx architecture provides an anatomical basis for a model of random tubal egg transport characterized by pendular "backward-forward" movements. These, in fact, resulting from contractions propagating for longer distances along the tube in one or other direction, can become asymmetric and unbalanced in either a pro or anti-uterine direction (Verdugo et al., 1980; Talo and Pulkkinen, 1982; Verdugo, 1982). Furthermore, the hormones can control both the frequency and distance of propagation of myotubal contraction (Talo and Hogson, 1978), thus affecting the rate of gamete transport throughout the tube (Hodgson and Talo, 1978). Our observations show that the myosalpinx architecture - unlike that of hollow organs with geometrically arranged musculature (e.g. gut) in which the orthogonal disposition of SMC is related to generate and to co-ordinate peristaltic movements in an antagonistic manner - is similar to that of other hollow organs with plexiform musculature (e.g. gall bladder). The contraction of such a plexiform SMC structure (Hodgson et al., 1977) may deform the tube wall generating a stirring process within the tubal lumen. By such a stirring movement the contact between hormones and nutrients contained in the tubal lumen, and gametes, zygotes and embryos is intensified, resulting in a correct fertilization and early embryo development (Motta et al., 1994a,b, 1995, 1998, 1999). These phenomena can explain why the decrease in the tube length may cause a decrease in the percentage of pregnancies (Silber et al., 1980; McComb et al., 1979, 1981).

In conclusion, recent anatomical models of the 3-D organization of the myosalpinx, integrated, in some cases, with classical data, serve to better explain important aspects of the Fallopian tube's physiology such as the propagation of electrical activity, motility and tubal transport that, as recorded in the early literature, were rather inconsistent. They also allowed us to hypothesize a new function for tubal contraction. Our concluding opinion is that further investigations in this field (following the above guideline) may provide new important insight regarding the unique role played by tube in the complex fertility process.

References

A new classification of Fallopian tube based on its myoarchitecture

A new classification of Fallopian tube based on its myoarchitecture

Accepted July 17, 2000