EVOLUCIÓN POSTNATAL DE POBLACIONES LINFOCITARIAS EN PLACAS DE PEYER DE CABRA.

Postnatal development of lymphocyte subpopulations in the peyer's patch goat.

Dirección de los autores/address of authors: Dr. J. Seva. U.D. Histología y Anatomía Patológica. Facultad de Veterinaria. Universidad de Murcia. Aptdo 4021. MURCIA.

RESUMEN

Se ha estudiado la incidencia y localización de linfocitos T CD2⁺, CD4⁺, CD8⁺ y γ/δ linfocitos B IgM⁺ y células MHC II⁺ en las placas de Peyer yeyunales e ileocecales de cabras de 1 semana, 1, 2 y 3 meses de edad, utilizando anticuerpos monoclonales y técnicas inmunocitoquímicas. Los centros germatorivos de los foliculos de las placas de Peyer están ocupados por numerosos linfocitos IgM⁺, junto con algunos linfocitos T CD2⁺ y CD4⁺ que aumentan con la edad, particularmente en placas de Peyer ileocecales. En cabras de una semana de edad los linfocitos B IgM⁺ son escasos en corona, cúpula y área interfolicular en placas de Peyer ileocecales y ausentes en placas de Peyer yeyunales. En cabras de un mes de edad los linfocitos B IgM⁺ aumentaron en estas localizaciones en ambas placas de Peyer, y su número no cambió mucho con la edad. En todos los animales el área interfolicular está ocupada fundamentalmente por linfocitos T CD2⁺, con una ratio CD4⁺/CD8⁺ mayor de 1. En la cúpula los linfocitos T CD2⁺ son más numerosos en las cabras de una semana de edad que en cabras mayores de un mes, donde la ratio CD4⁺/CD8⁺ que es mayor de 1, aumenta con la edad. Los linfocitos T γ/δ son escasos en todos los compartimentos de ambas placas de Peyer.

SUMMARY

The incidence and location of CD2⁺, CD4⁺, CD8⁺ and γ/δ T lymphocytes, IgM⁺ B lymphocytes and MHC II⁺ cells were studied in yeyunal and ileocaecal Peyer's patches in goat of one week, one month, three months and seven months, using monoclonal antibodies and immunohistochemical methods. The germinal centres of the follicles of the Peyer's patches are occupied by numerous IgM⁺ B lymphocytes and some CD2⁺/CD4⁺ T lymphocytes which increase with age, particularly in the ileocaecal Peyer's patches. In one week old goats IgM⁺ B lymphocytes are scarce in outer corona, dome and interfollicular area in ileocaecal Peyer's patches and are absent in yeyunal Peyer's patches. In one month old goats the IgM⁺ B lymphocytes increase in these loca-
tions in both Peyer's patches, and their number doesn't change much with age. In all the animals, the interfollicular area is occupied fundamentally by CD2⁺ T lymphocytes with a CD4/CD8 ratio greater than 1. In the dome the CD2⁺ T lymphocytes are more numerous in one week-old goats than in goats older than one month, where the CD4/CD8 ratio is greater than 1, increasing with age. The γδ T lymphocytes are scarce in all compartments in both Peyer's patches.

INTRODUCCIÓN

Las Placas de Peyer (PP) forman parte del tejido linfoidé asociado al intestino (DOE, 1989), que tiene un importante papel en la absorción y presentación de antígenos y estimulación inmunitaria (STOKES y BOURNE, 1989). Según su localización han sido clasificadas como PP yeyunales (PPY) y PP ileales (PPI) o PP ileocececales (PPIc) que se diferencian en su morfología, función y poblaciones celulares existentes (LARSEN y LANDSVERK, 1986; HOGENESCH y FELSBURG, 1992). Las PPI han sido consideradas en rumiantes un órgano linfoidé primario (GERBER et al., 1986; LARSEN y LANDSVERK, 1986; PARSONS et al., 1989), con un importante papel en el desarrollo de células B (MIYASAKA y MORRIS, 1988), contienen mayor número de células IgM⁺ que las PPy (HOGENESCH y FELSBURG, 1992), donde según MIYASAKA et al. (1984) predominan las células IgA⁺. Estas últimas en oveja y ambas PP en rata y ratón evolucionan de igual forma que en órganos linfoides secundarios (HUSBANDS y GOWANS, 1978; LANDSVERK et al., 1991 KROESE et al., 1992) en respuesta a los antígenos que penetran vía digestiva, apareciendo un mayor número de células T CD4⁺ en los foliculos de las PPy que en PPI (HOGENESCH y FELSBURG, 1992). A causa de la importancia de enfermedades entéricas en rumiantes, como la paratuberculosis, donde la respuesta inmune determina el grado de resistencia y también el cuadro clínico de la enfermedad, el estudio del sistema inmune en el tejido linfoidé asociado al intestino es crucial. El propósito de este estudio es examinar el desarrollo postnatal, número y compartimentación, de las células linfoides en las PP en cabra, usando un panel de anticuerpos monoclonales contra antígenos de superficie leucocitarios bovinos que reconocen las diferentes subpoblaciones en cabra (NAVARRO et al., 1996). Los resultados serán útiles para futuros estudios de la inmunopatología de las enfermedades intestinales en rumiantes.

MATERIAL Y MÉTODOS

Se han estudiado 4 grupos de animales, formado cada uno de ellos por 4 cabras (Capra hircus) de raza Murciano-granadina de 1 semana, 1, 3 y 7 meses de edad. Los animales se eutanasieron con pentotal sódico y tras la necropsia se procedió a la toma de muestras de PPy e Ic que fueron congeladas en 2-metilbutano, previamente enfriado en nitrogeno líquido y posteriormente almacenadas a -70 °C hasta ser utilizadas. Mas tarde se realizaron cortes de 5 μm de grosor con criostato, obteniéndose secciones que se depositaron sobre portaobjetos y se fijaron en acetona durante 10 min.

Las diferentes poblaciones linfocitarias fueron visualizadas utilizando la técnica del complemento avina biotina peroxidasa (ABC) como se describe a continuación. Tras la fijación en acetona las muestras fueron rehidrata-
das durante 5 min en solución 0.5 M tris buffer-red saline (TBS) pH 7.6 y tratadas con fenilhidracina (Sigma, USA) al 0.05% en TBS durante 40 min para inhibir la actividad peroxidasa endógena. Las muestras fueron lavadas en TBS y se aplicó suero normal de conejo (Dakopatts, Denmark) a dilución 1:100 en TBS para realizar el bloqueo de las uniones no específicas. Se incubó cada uno de los anticuerpos monoclonales (AmMo) primarios suministrados por VMRD Pullman Inc. (Pullman, USA) (tabla 1) a su dilución óptima en cámara húmeda durante 60 min, luego se lavaron las muestras en TBS y se incubaron con el anticuerpo secundario, IgG de conejo biotinada anti IgG de ratón (Dakopatts, Denmark) a dilución 1:250 durante 45 min, tras ser lavadas en TBS se incubaron con el ABC (Vector Laboratories, USA) durante 45 min. La actividad peroxidasa fue detectada al incubar la muestras en una solución de 3,3′-diaminobenzidine tetrahidrocloride (Sigma, USA) al 0.05% y peróxido de hidrógeno al 0.03% en TBS a pH 7.6, la reacción se paralizaba tras 5 min aclarando los portaobjetos en agua corriente. Posteriormente las muestras se contrastaron en hematoxilina durante 2 min, se aclararon en agua corriente y se montaron en medio acuoso.

Tabla 1. Anticuerpos monoclonales (AmMo) usados y diluciones

<table>
<thead>
<tr>
<th>mAb</th>
<th>Specificity</th>
<th>Ig isotype</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>H42A</td>
<td>MHC II</td>
<td>IgG2</td>
<td>1:10000</td>
</tr>
<tr>
<td>BAQ155A</td>
<td>IgM</td>
<td>IgG1</td>
<td>1:10000</td>
</tr>
<tr>
<td>BAQ95A</td>
<td>CD2</td>
<td>IgG1</td>
<td>1:1000</td>
</tr>
<tr>
<td>GC50A1</td>
<td>CD4</td>
<td>IgM</td>
<td>1:250</td>
</tr>
<tr>
<td>CACT08C</td>
<td>CD8</td>
<td>IgG1</td>
<td>1:1000</td>
</tr>
<tr>
<td>CACTB6A</td>
<td>γδ</td>
<td>IgG1</td>
<td>1:250</td>
</tr>
</tbody>
</table>

El estudio de la incidencia y localización de las poblaciones linfocitarias se realizó mediante un analizador digital de imagen incorporado a un microscopio sobre secciones de tejido, contando el número de células positivas en campos de 1500 mm² de las PP. El número de campos (n), de cada muestras y compartimento era previamente determinado calculando n> (s.d./0.05X²), donde s.d. es la desviación típica, X es la media de la muestra y 0.05 es el nivel de confianza elegido (Aherné y Dunnill, 1982).

RESULTADOS

En las PP de todos los animales estudiados los centros germinativos de los foliculos aparecen ocupados por abundantes infocitos IgM⁺ (figura 1). Tanto en centros como en corona los linfocitos T CD2⁺ aparecen de forma aislada (figura 2) y su número aumenta con la edad, siendo mayor el aumento en PPc (tablas 2 y 3). El número y la distribución de los linfocitos T CD4⁺ son similares a los linfocitos T CD2⁺, mientras que los linfocitos T CD8⁺ sólo se observan en escaso número y siempre aisladas, generalmente a partir de los 3 meses (tablas 2 y 3).

En corona, cúpula y área interfolicular de PPc de los animales de una semana de vida, los linfocitos IgM⁺ son escasos (tabla 3) y se encuentran distribuidos de forma aislada, mientras que en PPY apenas existen (tabla 2). Al mes aumentan considerablemente en ambas PP, para mantenerse hasta los animales adultos en valores similares (figura 1; tablas 2 y 3).

Tanto en cúpula de las PPY como en los linfocitos T CD2⁺ son abundantes en los animales de una semana de edad, pero disminuyen de forma acentuada al mes, para mantenerse de manera constante hasta los 7 meses (figura 2). En los animales de una semana el número de linfocitos T CD4⁺ es ligeramente superior al de T CD8⁺, ambas subpoblaciones sufren una dis-
Figura 1. Placa de Peyer Yeyunal (a) y Placa de Peyer Ileocecal (b) de animales de 1 mes teñidas para linfocitos B (Ig M'). Los linfocitos B ocupan el centro germinativo de los foliculos. En corona, cúpula y área interfolicular son escasos, apareciendo en menor proporción en Placas de Peyer Ileocecales.

Figura 2. Placa de Peyer Yeyunal (a) y Placa de Peyer Ileocecal (b) de animales de 3 meses teñidos para linfocitos T CD2: Los linfocitos T CD2+ aparecen en escasa proporción en los foliculos de los centros germinativos, son numerosos en cúpula y abundantes en área interfolicular. En placas de Peyer Ileocecales los linfocitos T CD2+ aparecen en mayor proporción en los centros germinativos de los foliculos.
Figura 3. Placas de Peyer Yeyunales de animales de 3 meses teñidas para linfocitos T CD4⁺ (a) y T CD8⁺ (b). En los folicúlos solo aparecen linfocitos T CD4⁺. En área interfolículo ambas poblaciones son muy numerosas.

La variación del número del linfocitos T CD8⁺, por lo que la ratio CD4⁺/CD8⁺ aumenta (figura 3), no sufriendo variaciones con la edad (tabla 3).

Los linfocitos T γ/δ son muy escasos en las PP de todos los animales estudiados, su valor es inferior a uno por 1500 mm² y sólo se observan células aisladas en cúpula y áreas interfoliculares.

En áreas interfoliculares de PP de los linfocitos T CD2⁺ son abundantes, se encuentran densamente agrupadas (figura 2) y su número no sufre variaciones con la edad (tablas 2 y 3). Tanto en PP como en PPc los linfocitos T CD4⁺ y T CD8⁺ son muy numerosos (figura 3). En PP los linfocitos T CD4⁺ y T CD8⁺ aumentan ligeramente con el edad a partir del 3 mes, mientras que los T CD8⁺ en menor número disminuyen, variaciones que son más evidentes a los 3 meses. El aumento de los linfocitos T CD4⁺, junto al descenso de los linfocitos T CD8⁺, provoca un aumento de la ratio CD4⁺/CD8⁺ con la edad (tabla 2). En PPc los linfocitos T CD4⁺ y T CD8⁺, apenas sufren variaciones con la edad.

Desde la primera semana de vida se observan células MHC II⁺ ocupando la mayor parte de los folicúlos de ambas PP. Presentan morfología redondeada o estrellada, y son más numerosas en cúpula y áreas interfoliculares también son abundantes, apareciendo de forma más dispersa y con morfología, en la mayoría de las ocasiones, redondeada.

DISCUSIÓN

La distribución y evolución de las distintas
Tabla 2. Número de células positivas por 1500 mm² con cada AcMo utilizado y ratio CD4/CD8 en placas de Peyer yeyunesales.

<table>
<thead>
<tr>
<th>Zona</th>
<th>Edad</th>
<th>B</th>
<th>CD2</th>
<th>CD4</th>
<th>CD8</th>
<th>CD4/CD8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centro</td>
<td>1 semana</td>
<td>16.40±0.57</td>
<td>1.62±0.97</td>
<td>1.43±1.01</td>
<td><1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 mes</td>
<td>18.80±0.172</td>
<td>1.82±0.82</td>
<td>1.54±0.92</td>
<td><1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3 meses</td>
<td>18.00±0.92</td>
<td>2.67±1.75</td>
<td>2.51±1.90</td>
<td><1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7 meses</td>
<td>18.05±0.96</td>
<td>3.51±1.03</td>
<td>3.15±1.01</td>
<td><1</td>
<td>-</td>
</tr>
<tr>
<td>Corona</td>
<td>1 semana</td>
<td><1</td>
<td>1.46±0.77</td>
<td>1.24±0.65</td>
<td><1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 mes</td>
<td>6.2±0.62</td>
<td>1.42±0.86</td>
<td>1.21±0.87</td>
<td><1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3 meses</td>
<td>6.83±0.98</td>
<td>1.97±1.01</td>
<td>1.52±1.03</td>
<td><1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7 meses</td>
<td>7.46±0.88</td>
<td>3.00±0.97</td>
<td>2.65±0.91</td>
<td><1</td>
<td>-</td>
</tr>
<tr>
<td>Cúpula</td>
<td>1 semana</td>
<td><1</td>
<td>10.6±2.01</td>
<td>6.75±1.19</td>
<td>4.22±2.43</td>
<td>1.29</td>
</tr>
<tr>
<td></td>
<td>1 mes</td>
<td>5.50±0.83</td>
<td>6.25±1.45</td>
<td>4.03±1.27</td>
<td>2.35±0.96</td>
<td>1.71</td>
</tr>
<tr>
<td></td>
<td>3 meses</td>
<td>3.93±0.94</td>
<td>6.83±1.67</td>
<td>5.04±0.97</td>
<td>2.25±0.82</td>
<td>2.25</td>
</tr>
<tr>
<td></td>
<td>7 meses</td>
<td>4.26±1.06</td>
<td>6.03±1.17</td>
<td>5.03±0.90</td>
<td>2.14±0.92</td>
<td>2.35</td>
</tr>
<tr>
<td>Área</td>
<td>1 semana</td>
<td><1</td>
<td>18.50±2.98</td>
<td>10.14±2.23</td>
<td>8.20±1.96</td>
<td>1.23</td>
</tr>
<tr>
<td>Interfolicular</td>
<td>1 mes</td>
<td>2.32±0.85</td>
<td>18.77±2.43</td>
<td>0.94±0.49</td>
<td>8.50±0.80</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>3 meses</td>
<td>1.71±0.49</td>
<td>18.25±1.47</td>
<td>12.25±2.02</td>
<td>6.22±2.89</td>
<td>1.96</td>
</tr>
<tr>
<td></td>
<td>7 meses</td>
<td>2.01±0.91</td>
<td>18.16±0.89</td>
<td>12.43±1.01</td>
<td>6.00±0.98</td>
<td>2.07</td>
</tr>
</tbody>
</table>

Tabla 3. Número de células positivas por 1500 mm² con cada AcMo utilizado y ratio CD4/CD8 en placas de Peyer ileoecceales.

<table>
<thead>
<tr>
<th>Zona</th>
<th>Edad</th>
<th>B</th>
<th>CD2</th>
<th>CD4</th>
<th>CD8</th>
<th>CD4/CD8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centro</td>
<td>1 semana</td>
<td>15.50±1.43</td>
<td>1.87±1.32</td>
<td>1.56±1.42</td>
<td><1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 mes</td>
<td>17.36±2.15</td>
<td>2.26±0.95</td>
<td>1.98±0.98</td>
<td><1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3 meses</td>
<td>17.23±1.10</td>
<td>4.38±1.76</td>
<td>4.02±1.84</td>
<td><1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7 meses</td>
<td>16.33±2.34</td>
<td>6.60±1.57</td>
<td>6.15±1.49</td>
<td><1</td>
<td>-</td>
</tr>
<tr>
<td>Corona</td>
<td>1 semana</td>
<td>3.45±0.95</td>
<td>2.08±0.72</td>
<td>1.98±0.69</td>
<td><1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1 mes</td>
<td>5.64±0.98</td>
<td>2.43±0.97</td>
<td>2.02±0.91</td>
<td><1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3 meses</td>
<td>5.47±1.01</td>
<td>3.86±1.69</td>
<td>3.52±1.80</td>
<td><1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7 meses</td>
<td>6.13±2.13</td>
<td>4.56±1.70</td>
<td>4.09±1.81</td>
<td><1</td>
<td>-</td>
</tr>
<tr>
<td>Cúpula</td>
<td>1 semana</td>
<td>3.93±2.14</td>
<td>11.56±2.38</td>
<td>6.55±1.22</td>
<td>3.78±1.28</td>
<td>1.73</td>
</tr>
<tr>
<td></td>
<td>1 mes</td>
<td>4.11±1.25</td>
<td>6.52±1.65</td>
<td>4.21±1.44</td>
<td>1.41±0.62</td>
<td>2.98</td>
</tr>
<tr>
<td></td>
<td>3 meses</td>
<td>3.27±1.08</td>
<td>6.41±1.16</td>
<td>5.36±1.10</td>
<td>1.55±0.69</td>
<td>3.45</td>
</tr>
<tr>
<td></td>
<td>7 meses</td>
<td>3.64±1.14</td>
<td>7.31±1.43</td>
<td>4.71±1.25</td>
<td>2.44±0.91</td>
<td>1.93</td>
</tr>
<tr>
<td>Área</td>
<td>1 semana</td>
<td>1.81±1.51</td>
<td>6.38±2.01</td>
<td>9.92±1.77</td>
<td>5.97±2.21</td>
<td>1.66</td>
</tr>
<tr>
<td>Interfolicular</td>
<td>1 mes</td>
<td>2.68±0.89</td>
<td>17.06±1.81</td>
<td>0.57±3.53</td>
<td>6.30±2.38</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td>3 meses</td>
<td>4.32±1.03</td>
<td>16.7±1.76</td>
<td>10.45±1.82</td>
<td>6.07±1.36</td>
<td>1.72</td>
</tr>
<tr>
<td></td>
<td>7 meses</td>
<td>4.35±1.69</td>
<td>16.75±1.45</td>
<td>9.92±1.79</td>
<td>6.46±2.27</td>
<td>1.53</td>
</tr>
</tbody>
</table>
poblaciones celulares desde la semana de vida revela que la respuesta inmunitaria en PPy e Ic es antígeno dependiente, pudiendo considerarse ambas PP como órganos linfoides secundarios desde el nacimiento, al igual que en rata y ratón (Craing y Cebra, 1971; Husbands y Gowan, 1978). Igualmente la evolución de las subpoblaciones linfocitarias en PP indica que la actividad funcional se inicia con anterioridad en las PPIc.

Los centros de las PPy e Ic son áreas B ocupadas casi exclusivamente por células IgM+, aparecen en proporciones similares en ambas PP a diferencia de las observaciones de Miyasaki et al. (1984) y Larsen y Landsverk (1986), para quienes las PPI presentan un mayor número de células IgM+. La presencia de células T CD2+CD4- en los centros germinativos de los foliculos desde la semana de vida es indicativo de la existencia de una linfopoyesis antígeno dependiente, que se hace más evidente a partir del mes, al igual que en otros órganos linfoides secundarios (Bianchi et al., 1992). Los linfocitos T en los centros germinativos y coronas se encuentran en mayor número y aumentan de forma más acentuada a partir del mes en las PPIc, en contraposición con las descripciones de Hein et al. (1989), lo que indicaría que existe una mayor respuesta antígeno dependiente que en PPy.

Los linfocitos B tras la estimulación antigénica de los centros germinativos, pasan a ser células de memoria y salen de los mismos hacia corona, cúpula y áreas interfoliculares, para dirigirse posteriormente a otros territorios, formando parte del reservorio recirculante del organismo constituido por los diferentes órganos linfoides secundarios (Abernethy y Hay, 1992). La escasa presencia de células B en corona, cúpula y áreas interfoliculares de las PPy en contraposición a las PPIc en los animales de una semana de vida, indicaría que la respuesta humoral se inicia con anterioridad en PPIc. Posteriormente el número de células positivas se incrementa en corona, cúpula y área interfolicular de PPy, siendo similar al de las PPIc en animales de 7 meses, lo que indicaría una función similar en ambas PP, existiendo una linfopoyesis más acentuada que en animales jóvenes como describen Parsons et al. (1989).

La elevada presencia de células T CD2+ en las áreas interfoliculares las convierte en las áreas T de las PP, apareciendo los linfocitos CD4+ siempre en mayor proporción que los CD8+ como ocurre en otros órganos linfoides (Van Ewijk, 1989; Bianchi et al., 1992), a diferencia de las observaciones de Parsons et al. (1989) en PP de rumiantes. Estas poblaciones junto a la elevada presencia de células MHC II+, indicarían que éste sería un importante lugar de interacción entre células presentadoras de antígenos, linfocitos T CD4+ y antígenos que llegan vía intestinal, adquiriendo un papel fundamental en la respuesta inmunitaria de tipo celular.

En cúpula de PPy e Ic los linfocitos T CD2+ son abundantes a la semana de vida, encontrándose los linfocitos CD4+ siempre en mayor proporción que los CD8+ a diferencia de las descripciones de Parsons et al. (1989). La disminución de células T con la edad en la cúpula se debe fundamentalmente al descenso en el número de linfocitos T CD8+, que son más numerosos en los animales de una semana. Al situarse este área próxima a la luz intestinal y entrar rápidamente en contacto con los antígenos que llegan vía digestiva, podría ser el lugar donde los linfocitos T CD8+ actuarian inhibiendo la respuesta inmunitaria frente a los antígenos, ya que a esta subpoblación se le ha atribuido un papel preponderante en el desarrollo...
de los fenómenos de tolerancia inmunitaria (BRANDTZAEG et al., 1989; DOE, 1989), que tendrían una mayor relevancia en las primeras etapas de la vida del animal.

Al igual que en ovino los linfocitos T γδ aparecen en escaso número en áreas interfoliculares (MACKAY et al., 1991), aunque en cabra los hemos observado igualmente en cúpula. No se han encontrado diferencias entre ambas PP en contraposición a PARSONS et al. (1989) para quienes este tipo celular, es más abundante en PPY.

Podemos concluir diciendo que en el cabra se no han encontrado evidencias en PPIC que indiquen una linfopoyesis antígeno independiente después del nacimiento, en contraposición a otros autores que en rumiantes las consideran órganos linfoides primarios (REYNOLDS y MORRIS, 1983; REYNOLDS, 1986; PABTS et al., 1988) y al igual que las PPY pueden considerarse como órganos linfoides secundarios.

AGRADECIMIENTOS

Deseamos expresar nuestro agradecimiento al Servicio de Análisis Digital de Imagen de la Universidad de Murcia, en la persona de Mª. Teresa Castell y a D. Juan Sánchez por su labor técnica desempeñada en la realización de este trabajo.

BIBLIOGRAFÍA

KROESE F.G.M., AMMERLAAN W.A.M.,

